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1. Introduction
Assume the distribution P��of the random vector X belongs to a regular exponential family �, i.e. the

members of � has the form

(1.1) dP c( T x dP
i

h

i iθ θ=










=
∑) exp ( )

1
0θ

where P0 is an arbitrary element of �, ( )θ= θ θ1 , ..., h  is a vector of minimal canonical parameters

from an open domain � in Rh (c.f. Barndorff-Nielssen, 1978).

The problem of testing hypotheses related to one of the parameters θ θ1, ..., h  or a linear

transformation of the minimal canonical parameters has been studied by Lehmann (1986). For the

particular problem of testing H 0 1 0:θ θ=  against H1 1 0: ,θ θ>  the uniformly most powerful (UMP)

unbiased test is obtained by considering the null distribution of T1(X) conditional on the minimal

sufficient statistics T X T Xh2 ( ), ..., ( )  (when �0 is known).

Most test-problems are much more complicated than the problem mentioned above. Often

more than one parameter restriction is needed to specify many important hypotheses. Since, in general,

it is impossible to find a test which is UMP unbiased against all alternatives, we shall develop tests

which are UMP unbiased against a subset of the alternative space. Schaafsmaa (1966) follows a

somewhat similar approach by introducing most stringent somewhere most powerful test.

The first step in obtaining a UMP unbiased test is to verify that the hypothesis can be

formulated within the class of regular models. Thus, our strategy aims at introducing a regular

subfamily of �, in which all regular hypotheses can be expressed through a single parameter. Within

this subfamily the standard Neyman-Pearson theory can be applied to construct UMP unbiased tests.

When analysing contingency tables the multinomial model is a commonly used

probability model. This model is a typical example of a regular exponential family. The problem of

testing the hypothesis of independence in a two-dimensional contingency table (rxs-table) involves

( ) ( )r s− −1 1  parameter restrictions, since the dimension of the parameter space is reduced from

rs −1  to r s+ − 2  under the hypothesis of independence. For applying the results in Section 2 in this

or other test-problems for regular exponential families we simply have to make sure that the

hypothesis restrictions can be expressed as linear functions of minimal canonical parameters. Note that

this condition is much easier to verify than the usual conditions appearing in the theory of UMP

unbiased tests (c.f. Lehmann, 1986).
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In Section 3 the results are demonstrated on four test-problems. Among these the problem

of testing the hypothesis of independence in a two-dimensional contingency table is studied. The

derived tests are exact in the sense that their sampling distributions are independent of the nuisance

parameters which make it unnecessary to use large-sample approximations to sampling distributions.

2. The existence and construction of UMP unbiased tests for 
multiparameter exponential families

Several well-known hypotheses for the exponential family of distributions can be formulated as linear

restrictions on minimal cononical parameters. For hypotheses of this kind we shall establish a class of

tests which are UMP unbiased against certain restricted alternatives. To this end the following results

of Barndorff-Nielssen (1978) will be employed.

Definition 2.1. L is an affine set if c c L1 1 2 2l l+ ∈  for every l i L i∈ =, , ,1 2  and for every

c1 and c2 such that c c1 2 1+ = .

Definition 2.2. Let { }Pθ θ: ∈Θ  be a canonical parametrization of the exponential family

�. A subset �0 of � is said to be affine if �0 is of the form { }℘ = ∈ ∩0 P Lθ θ: Θ  where L is an

affine subset of Rh.

Lemma 2.1. Let � be a regular exponential family and let �0 be a subset of �. Then the

two following statements are equivalent:

(i) �0 is regular

(ii) �0 is affine.

As will be demonstrated below Lemma 2.1 allows an alternative formulation of the

conditions appearing in the theory of UMP tests which makes it convenient to express hypotheses for

exponential families as regular subfamilies of � defined by (1.1). More specifically, this is done

formally by introducing a real parameter � which is used to generate various subspaces of the

parameter space.

Define ℘ ⊂ ℘γ,B  by

(2.1) ℘ = ∈℘ = + 










γ

γ
, :B Pθ θ ξB v U
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where θ ξ∈ ∈Θ, ,γ R  is an unspecified d0-dimensional vector, B is a specified d h1 × -matrix with

rank d1, U is a specified ( )d d1 0 1× + -matrix with rank d 0 1+ , v is a specified d1-dimensional vector,

d d0 10 1 1= −, , ..., ,  d h1 1 2= , , ...,  and h = dim .Θ

According to (1.1) and (2.1) a distribution from ℘ γ,B  can be written on the form

(2.2) dP c( Y x Z x dP
i

h d

i iθ θ= +




















=

−

∑) exp ( ) ( )γ τ
1

0

where d d d h d= − −1 0 1, , ...,τ τ  are nuisance parameters and Y, Z Z h d1, ..., −  are sufficient statistics.

Observe that ℘ γ,B  is a subfamily of the regular exponential family of distributions where

the parameter of interest � is specified as a linear combination of minimal canonical parameters.

Hence, for a fixed value �0 of �, ℘ γ0 ,B  represents the class of hypotheses constituting linear

restrictions on the minimal canonical parameter space. The elements of B, U and v in the definition of

℘ γ,B  are fixed real numbers which of course depend on the actual application.

As an immediate consequence of (2.2), Lemma 2.1 and Theorem 4.1, Lehmann (1986)

we get

Theorem 2.1. Let X be a vector of random variables with distribution P Bθ ∈℘ γ,  defined

by (2.1) where � is a real parameter. For testing the hypothesis H:γ γ= 0  against the alternatives

A:γ γ> 0  there exist a UMP unbiased level � test given by

( )
( )
( )

δ µ( )

( ) , , ...,

( ) , , ...,

( ) , , ...,

x

when Y x k z z z

when Y x k z z z

when Y x k z z z

h d

h d

h d

=

>

=

<










−

−

−

1

0

1 2

1 2

1 2

where k and � are determined by

( )E X z z zh dγ δ ε
0 1 2( ) , , ..., .− =

Proof. Let Q q Bq v UB
hR= ∈ = + 













:
γ
ξ  where �, �, v, U and B are defined in (2.1).

Since
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( )B q q Bq Bq

v U v U

v U

c c c c

c c

1 1 2 2 1 1 2 2

1 2

+ = +

= + 









+ + 











= + 




γ γ

γ

ξ ξ

ξ

for every q q Q1 2, ∈ B  and for every real c1 and c2 such that c c1 2 1+ = ,  the set QB satisfies Definition

2.1 which according to Definition 2.2 and Lemma 2.1 make ℘ γ,B  affine and regular. Hence, the

conditions of Theorem 4.3, Lehmann (1986) are fulfilled. Application of that theorem completes the

proof.

In the following, attention will be confined to the test-problem

H against A: : .γ γ γ γ= >0 0

Remark. Assume d rank rank= − =B U dimΘ  which means that (2.2) has the form

(2.3) ( )dP C Y x dPθ θ= ( ) exp ( ) .γ 0

In this case we see that the nuisance parameters vanish and Theorem 2.1 therefore yields a UMP level

� test for H against A.

For Theorem 2.1 to be interesting we must verify if the model under the null hypothesis

belongs to the family (2.1). As stated above, it is sufficient to consider hypotheses expressible as linear

restrictions of minimal canonical parameters. The elements of v and B are determined from the form

of the restrictions defining the hypothesis. Next, the elements of U must be specified. This has to be

done on the basis of assumptions or theories about the particular problem under investigation. If a

subset of the original alternative space is of particular interest, this may guide us in the specification of

U.

Observe that the model (2.1) represents no restrictions on the parameter space under

hypotheses which constitute linear restrictions on minimal canonical parameters. Hence, the tests

derived in Theorem 2.1 have level � for hypotheses of this type.

Note that two-sided test problems can be handled similarly to the one-sided test problem

discussed above.
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3. Four test-problems
By using the present approach the first test-problem illustrates the simplicity of detecting the Behrens-

Fisher model as non-regular. In the second test-problem we derive an exact test for the problem of

testing Hardy-Weinberg equilibrium. The remaining test-problems are chosen from Aaberge (1980),

each illustrates various aspects of the application of Theorem 2.1.

3.1. Behrens-Fisher problem

Let X X Y Ym n1 1, ..., ; , ...,  be independent ( )N ξ σ, 1  and ( )N ξ σ, 2 , respectively. We want to test the

hypothesis H:ξ η=  against A:ξ η> . The a priori model P� is a familiar member of the family of

regular exponential models and is given by

(3.1) ( )[ ]dP C x y x y dPi i i iθ θ= + + +∑ ∑ ∑ ∑( ) exp θ θ θ θ1 2 3
2

4
2

0

where P0 is the distribution corresponding to ξ η σ σ= = = =0 11 2, , and θ θ θ θ1 2 3 4, , ,  defined by

θ ξ σ θ η σ θ σ θ σ1 1
2

2 2
2

3 1
2

4 2
22 2= = = − = −, , ,  are minimal canonical parameters.

The hypothesis of equal means ξ η=  can be expressed by the minimal canonical

parameters as

H :θ θ θ θ1 3 2 4=

which is a non-linear restriction of the minimal canonical parameter space. Accordingly, the model

under H is not contained in (2.1), e.g., it is non-regular and the Neyman-Pearson theory is not

applicable.

3.2. Testing for Hardy-Weinberg equilibrium

Let N be the size of a random sample from a diploid population. Suppose that a certain locus carries

two allelic genes A and a and let p1, p2, p3 denote the proportions of individuals in the population

having genotypes AA, Aa and aa, respectively. The probability distribution of the random vector

( )X X X X= 1 2 3, ,  of the observed numbers of individuals of genotype AA, Aa, aa is given by the

multinomial distribution

(3.2)
N

x x x
p p px x x

1 2 3
1 2 3

1 2 3

! ! !
.

Let � be the exponential family given by (3.2). � is regular and can also be expressed as
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(3.3) ( )[ ]dP C x x dPθ θ= +( ) exp θ θ1 1 2 2 0

where ( )θi ip p i= =log , , ,3 1 2  constitute a set of minimal canonical parameters, P0 is the multinomial

distribution corresponding to p p p1 2 3 1 3= = =  and

( )( )C N N
( ) exp .θ = + +

−
3 1 1 2θ θ

According to genetic theory, the hypothesis

( ) ( ) ( )( )H p p p p p p p: , , , ,1 2 3
2 22 1 1= − −

for arbitrary p defines the Hardy-Weinberg equilibrium state.

It can easily be verified that the restriction

( )p p p2 1 3
1 2

2=

is an equivalent expression for H. Consequently, H is also equivalent to

H : log2 2 22 1θ θ− =

which is a linear restriction of the minimal canonical parameter space. Hence, the Hardy-Weinberg

equilibrium state yields a model contained in the family (2.1); the model under the hypothesis is

regular.

Let � be a real parameter. By substituting

(3.4) θ γ θ1 22 2 2= + − log

in (3.3) we get

(3.5) ( )( )[ ]dP C x x x dPx
θ θ= + +−( ) exp2 22

1 2 1 2 0
1 γ θ

as an alternative expression of the multinomial family (3.2). By (3.4), the hypothesis

H : γ =0

is equivalent to the hypothesis of Hardy-Weinberg equilibrium.
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By Theorem 2.1, a UMP unbiased test for H:γ =0  against A:γ >0  is obtained by

considering the null distribution of X1 conditional on the statistic Z X X= +2 1 2 .

By using the relation

z

N
z N z

z

N
z

x S

x
z N zN

z a b
N

x x x
a b

=

−

= ∈

−
−∑ ∑ ∑



 =











0

2
2

0

2

1 2 3

2
22 2

1

1!

! ! !

where { }S x x x x N x x z= + + = + =1 1 2 3 1 22: , ,  we obtain the following expression for the null

distribution

( ) ( ) ( )Pr
!

! ! !

,

H
z x

z x

X x Z z
N

x z x N z x
N

N

N
x

N x
z x

N
z

x
z

1 1
1 1 1

1
2

1

1

1 2
1

2
2 2

2

2
2 0

2

1

1

= = =
− − +













=







−
−













≤ ≤

−
−

−

Note that Haldane (1954) derives this test by using combinatiorial arguments.

Because of its exact properties the present conditional test is particularly useful for testing

the hypothesis of Hardy-Weinberg equilibrium in small samples.

3.3. Testing for diagonals-parameter symmetry in a 3�3 contingency table

For the analysis of square contingency tables having ordered categories, Goodman (1979a) introduced

the diagonals-parameter symmetry model. The purpose of this example is to derive an UMP unbiased

test for the hypothesis of diagonals-parameter symmetry in a 3�3-table.

Consider a two-dimensional contingency table with 3 rows, 3 columns and cell

probabilities pij satisfying

p i j and pij
i j

ij> = =∑ ∑0 1 2 3 1, , , , .

The probability distribution of the random vector ( )X X X X= 11 12 33, , ...,  of the observed cell numbers

is given by the multinomial distribution

(3.6)
N

x
p

i j
ij i j

ij
xij!

!∏ ∏ ∏ ∏
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where 
i j

ijx N∑ ∑ =  is the size of the random sample.

Let � be the exponential family given by (3.6). By introducing the minimal canonical

parameters

( )θij ijp p i j i j= = ≠log , , , , ( , ) ( , )33 1 2 3 3 3

a distribution Pθ ∈℘  can be written on the form

(3.7) ( )dP C x dPij ij
i j

θ θ=




















∑∑

≠

( ) exp exp
( , )( , ) 3 3

0θ

where

( )C N
ij

i j

N

( ) exp
( , )( , )

θ = +








∑∑

≠

−

9 1
3 3

θ

and P0 is the element of � corresponding to p i jij = =1 9 1 2 3, , , , .

The hypothesis of diagonals-parameter symmetry is defined by

(3.8)
p

p
k j i i j

ij

ji
k= = − <δ , ,

where 	k denotes a parameter connected to the cells (i,j) for which j i k k− = =, , .1 2

The parameter 	k in (3.8) is simply the odds that an observation will fall in one of the

cells (i,j) where j i k− = ,  rather than in one of the cells where j i k k− = − =, , .1 2

It is easily seen that (3.8) is equivalent to

H i jij ji j i: ,θ θ ξ− = <−

where

ξ δk k k= =log , , .1 2

Consequently, the diagonals-parameter symmetry model is contained in the family (2.1).

By substituting
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(3.9) θ θ
ξ γ

ξ
ij ji

j i

j i

i j

i j
− =

+ = =

= =







−

−

, ,

, , ,

2 3

1 2 3

in (3.7) we obtain the following alternative expression of the multinomial family (3.6)

(3.10) ( )dP C x x x x x dP
i

ii ii
i j

ji ij ji
k

k
i

k

ii kθ θ= + + +




















= < = =

−

+∑ ∑ ∑ ∑( ) exp .γ θ θ ξ23
1

2

1

2

1

3

0

According to (3.9), the hypothesis

H : γ =0

is equivalent to the hypothesis of diagonals-parameter symmetry. The test which rejects

H : γ =0  against A : γ >0

when

X k V W23 > ( , )

where

( ) ( )V V V W W W W= =1 2 12 13 23, , , ,

V X and W X Xk
i

k

ii k ij ij ji= = +
=

−

+∑
1

3

,

is UMP unbiased. A randomization is needed in order to fulfill the optimum property. For practical

reasons, however, this randomization will be ignored. k is chosen to satisfy the given significance

level, �, conditional upon V and W. To obtain this test, we have made use of Theorem 2.1 and the fact

that the null-distribution of X23 conditional on the statistics V1, V2, W12, W23, X11 and X22 is

independent of X11 and X22.

We have the following expression for the null-distribution (see Aaberge, 1980)

( )Pr , .H X x V v W w

w
x

w
v x

w w
v

23 23

23

23

12

1 23

12 23

1

= = = =





 −






+




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Consequently, the null-distribution of the UMP unbiased test is hypergeometric. Thus, no

computational problem is involved in applying the test.

The UMP unbiased level � test for the hypothesis of diagonals-parameter symmetry in

rxr-tables with ordered categories was derived by Aaberge (1980). It is a generalization of the present

test result for 3�3-tables and is shown to possess convenient distributional properties which allows

exact inference.

3.4. A small sample test for independence in two-way contingency tables

Consider a two-dimensional contingency table with r rows and s columns. The observed number in

cell (i,j) is denoted by xij and the corresponding random variables is Xij. Assume that the probability

distribution of the random vector ( )X X X rs= 11, ...,  is given by the multinomial distribution

(3.11)
N

x
p

i j
ij i j

ij
xij!

!∏ ∏ ∏ ∏

where ∑∑ =x Nij  is the size of the sample, p p rs11, ...,  denote cell probabilities and

j
ij

i

p∑∑ =1.

Let � be the exponential family given by (3.11). By introducing the minimal canonical

parameters

θij ij rsp p i r j s= = =log , , ..., ; , ...,1 1

we obtain the following alternative expression for Pθ ∈℘

(3.12) ( )dP C x dP
r s

ij ij
i j

θ θ( ) exp exp
( , )( , )
∑∑
≠























θ 0

where

( )C rs N

r s
ij

i j

N

( ) ( ) exp
( , )( , )

θ = +








∑∑

≠

−

1 θ

and P0 is the element in � corresponding to p rsij =1  for i r j s= =1 1,..., ; , ..., .

The hypothesis of independence is defined by
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H p p p i r j sij i j: , , ..., ; , ...,= = =+ + 1 1

where

p pi
j

s

ij+
=

=∑
1

  and  p pj
i

r

ij+
=

=∑
1

are marginal probabilities.

Alternatively, the hypothesis of independence can be expressed as

H i r j sij is rj: , , ..., ; , ...,θ θ θ− − = = − = −0 1 1 1 1

i.e. the hypothesis can be formulated as linear restrictions of the minimal canonical parameter space.

According to the results in Section 2 we can therefore establish a UMP unbiased �-level test for

independence. Consequently, let us confine our attention to the class of alternatives defined by the

following a priori restrictions

(3.13) θ θ θ γij is rj ija i r j s− − = = − = −, , ..., ; , ...,1 1 1 1

where � is unspecified and a a r s11 1 1, ..., − −  are predetermined values, i.e. we will construct a test for

H : γ =0   against  A : γ >0

under the model ℘ γ,B  given by (3.12) and (2.1), where v = 0 ,

( )U= ′
− − − − −a a a a a as s r r s11 1 1 21 2 1 11 1 1, ..., , , ..., , ..., , ..., , h rs= −1,  d r s1 1 1= − −( ) ( )  and B is a d�h-

matrix with rank d1 and elements equal to 0,1 and -1.

From (3.12) and (3.13) we see that every distribution P� given by

(3.14) dP C a x x x dP
i

r

j

s

ij ij
i

r

is i
j

s

rj jθ θ= + +




















=

−

=

−

=

−

+
=

−

+∑ ∑ ∑ ∑( ) exp γ θ θ
1

1

1

1

1

1

1

1

0

where

x x and x xi
j

s

ij j
i

r

ij+
=

+
=

= =∑ ∑
1 1

is an element of the family ℘ γ,B .
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Hence, by Theorem 2.1, an UMP unbiased test of H:γ =0  against A:γ >0  is obtained

by considering the null-distribution of Y a X
i

r

j

s

ij ij=
=

−

=

−

∑ ∑
1

1

1

1

 conditional on

X X X Xr s1 1 1 1+ − + + + −, ..., , , ..., .

Note that this particular class of tests is UMP unbiased for the hypothesis of

independence against the alternative class of dependence defined by (3.13).

The null-distribution is easily found from the generalized multivariate hypergeometric

distribution

(3.15)

( )Pr , ..., , ..., , ...

, ..., , ..., ... , ...,

, ...,

H r s r s

s s

r

r rs

s

X x X x X x X x

x
x x

x
x x

x
x x

N
x x

11 11 1 1 1 1 1 1 1 1

1

11 1

2

21 2 1

1

= = = =

=
























− − − − + + + +

+ + +

+ +

where

x x x j srj j
i

r

ij= − =+
=

−

∑
1

1

1, , ...,

and

x x x i ris i
j

s

ij= − =+
=

−

∑
1

1

1, , ..., .

In the particular case where all a ij =1 it can be shown that the null distribution reduces to

the hypergeometric distribution

( )P r Y y X x X x

x

y

N x

x y

N

x

H

j

s

j j

s

j

i

r

i

i

r

i

= = = =















−

−













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The model for which all aij are equal to 1 is known as the uniform association model and

is also considered by Goodman (1979b). When γ =0 , we have the null association model, which is

the usual model of statistical independence.

To decide upon an appropriate test (i.e. predetermination of the values for all aij), some

particularly interesting alternatives against which the hypothesis is to be tested may guide us in

choosing a certain set of values of a i r j sij , , . .., , , ..., .= − = −1 1 1 1  In the case when no a priori

information is available, we suggest the test for which a ij =1 for all i and j.

When r s= = 2  the null-distribution (3.15) reduces to the univariate hypergeometric

distribution and the test shows to be the well-known Fischer-Irwin's exact test for independence in

2 2× -tables (Fischer, 1934; Irwin, 1935; Lehmann, 1986).

4. Summary and discussion
The present paper provides a simplified strategy for applying the theory of UMP unbiased tests for

regular exponential families of distributions. This strategy aims at introducing a regular subfamily of

the a priori model, in which all regular hypotheses can be expressed through a single parameter.

Within this subfamily the standard Neyman-Pearson theory can be applied to construct UMP unbiased

tests. This approach leads to UMP unbiased tests for various multiparameter testing problems with

restricted alternatives and is inter alia used to construct a UMP unbiased test for the hypothesis of

independence in two-way tables against a restricted alternative class of dependence. Moreover, the

obtained test proves to be exact since we can use the exact null-distribution rather than its large sample

approximation. An interesting question is how this test performs when the a priori restrictions are not

quite correct. By comparing the power of the UMP unbiased test to the power of some reasonable

competitors, information about that problem is obtained.

For the particular problem of comparison of proportions in several 2�2 tables, Aaberge

(1983) gives asymptotic Pitman efficiencies of a UMP unbiased test and some competitors and shows

that the comparisons favor use of the UMP unbiased test when reasonable a priori information is

available. This result suggests that the present test priciple is attractive even when the restricted a

priori models are not quite correct.
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