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Sammendrag 

Jeg bruker en felles faktor-tilnærming til å identifisere substitusjonsmuligheter mellom innsatsfaktorer 

i et faktoretterspørselssystem. Teknologiske endringer kan føre til endringer i den relative bruken av 

innsatsfaktorer innenfor en næring. Teknologiske endringer kan også være felles for flere næringer. 

Hvis slike felles sjokk ikke blir tatt hensyn til, kan estimatene for substitusjonselastisiteten bli skjeve. I 

denne artikkelen undersøker jeg viktigheten av å ta hensyn til teknologiske endringer ved å åpne for 

ulike typer felles faktorer, både innen og mellom bransjer. Estimeringsresultatene viser at hvis 

teknologiske endringer ikke blir tatt hensyn til på en korrekt måte, finner vi upålitelige (negative) 

estimater av substitusjonselastisiteten. Når slike tekonologiske endringer tas hensyn til, finner jeg at de 

estimerte substitusjonselastisitetene er positive i alle de ikke-offentlige næringene i Fastlands-Norge. 



1 Introduction

Specification of the production function is important when estimating the elasticity of substitu-

tion between input factors. Berndt (1976), applying a constant elasticity of scale (CES) function

with labour and capital as input factors, finds an elasticity close to unity for US aggregate

production when only allowing for Hicks-neutral technological changes. Antràs (2004) shows

that the estimated elasticity of substitution decreases when allowing for biased technological

changes. However, Antràs (2004) only considers product functions where the technological

changes follow deterministic processes.

Diamond et al. (1978) showed that joint identification of the elasticity of substitution and

factor-biased technological changes can be infeasible, also known as the impossible theorem.

One approach to circumventing this problem is to assume a certain functional form for the

growth rates of efficiency levels for the input factors, see, e.g., Klump et al. (2012). Typically,

these efficiency levels are assumed to follow deterministic trends, see, e.g., the overview in

Leon-Ledesma et al. (2010). However, a steady trend might not reflect technological changes in

a good manner, since technological changes can follow a process with large and unpredictable

shifts.

Another approach to tackling the impossibility theorem of Diamond et al. (1978) is to con-

sider a system with more than two input factors where the growth rates of the efficiency levels

are restricted to follow a reduced number of stochastic trends, as in Hungnes (2011). However,

Hungnes (2011) assumes that relative factor prices are given outside the model, so that they

are weakly exogenous. This implies that shifts in the use of input factors due to technological

changes will not lead to changes in the relative input prices. This is a necessary assumption in

Hungnes (2011) in order to obtain unbiased estimates of the elasticity of substitution: if this as-

sumption does not hold, the estimates may be downward biased. To understand this, consider

a technological shift that increases the productivity of one input factor. More demand for this

input factor may lead to a higher price for the input factor. Hence, we will observe increased

use of an input factor with increased price.

In the present paper, I do not assume that the relative input prices are independent of the

technological changes. This is achieved by including common factors, which are allowed to be

4



correlated with other variables in the system.

Two approaches are common in the presence of unobserved common factors: the principal

component approach, see Coakley et al. (2005) and Bai (2009); and the cross-sectional averages

approach presented in Pesaran (2006) and shown to also apply to non-stationary variables in

Kapetanios et al. (2011). The principal component approach in Coakley et al. (2005) assumes

that there is no correlation between the common factors and the other regressors, such as the

input prices. Bai (2009) suggests an extension with an iterative method and shows that the

corresponding estimator is consistent even if the common factors are correlated with the re-

gressors. The cross-sectional approach in Pesaran (2006) implies a consistent estimator in the

presence of a correlation between the common factors and the regressors, without applying an

iterative method. Furthermore, Urbain and Westerlund (2011) show that the cross-sectional av-

erages approach generally performs better than the principal component approach. Here, due

to the simplicity of the approach in Pesaran (2006), I apply an extension of the cross-sectional

averages approach. The extension is due to the fact that I consider two cross-sectional dimen-

sions.

If one of the cross-sectional dimensions is small, the framework in Pesaran et al. (2004) —

also denoted the GVAR (global model vector-autoregressive) model — can be applied. The

interdependence in the small cross-sectional dimension can then be taken into account directly

by analysing this cross-sectional dimension as a VAR model. The cross-sectional dependence

in the other dimension can be approximated by using cross-sectional averages across this di-

mension. However, since this approach involves estimating the full covariance structure of the

smallest dimension, it entails estimating many parameters if both cross-sectional dimensions

are large. Chudik and Pesaran (2016) and Pesaran (2015) indicate that, when applying the

Global VAR, the smaller of the two cross-sectional dimensions is typically in the range of four

to six variables.

Within an industry, the common factors can capture processes such as factor neutral techno-

logical progress. Without the common factors, the technological progress will usually only be

explained by a deterministic trend. When common factors are included, they can pick up both

stationary and non-stationary processes, depending on the order of integration of the observ-

able variables included in the analysis. Combined with a deterministic trend, these common
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factors can express the process of the technological progress better than the deterministic trend

alone. Similarly, common factors within an industry can capture factor-biased technological

changes that are only present in that industry.

Technological changes can also change the optimal composition of factor use in more than

one industry. For example, a technological change can lead to more use of some input factors

in most industries and reduced use of other input factors. Common factors that are composed

of averages over industries can capture such technological changes.

Controlling for technological changes both within and between industries, we can obtain

unbiased estimates of the substitution elasticity in each industry. The estimation results in this

paper show that, if technological changes are not controlled for, we estimate negative sub-

stitution elasticities in 3 out of 17 industries in Norway. The problem of estimating negative

substitution elasticities continues to exist when controlling for some, but not all, types of tech-

nological changes. However, when controlling for all types of technological changes, i.e. by

including common factors both within and between industries, we get positive estimates of

the substitution elasticities in all industries.

The rest of the paper is organised as follows. In Section 2 I present the theoretical model for

factor demand based on a constant elasticity of substitution production function, where some

parameters are time-dependent and represented by common factors. In Section 3, I present a

common factor model with two cross-sectional dimensions and demonstrate that they can be

approximated by cross-sectional averages in both of these dimensions. Section 4 presents a

Monte Carlo experiment to show the importance of taking into account the different types of

common factors. Section 5 suggests how to construct the proxies for the common factors in the

data set analysed here. Section 6 presents the estimation results for the elasticity of substitution

in 17 Norwegian industries with up to ten input factors in each industry. Section 7 concludes.

2 Theory

The demand function is based on cost minimising given a constant elasticity of substitu-

tion (CES) product function. In industry i (i = 1, . . . , NA) the demand for input factor j

(j = 1, . . . , NB) at time t (t = 1, . . . , T), Vijt, is a function of the relative factor price (Pijt/PiAt),
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production in the industry (Xit) and some time-varying parameters (δijt and θit) explained be-

low:1

vijt = σi ln δijt −
1
κi

θit − σi
(

pijt − piAt
)
+

1
κi

xit, (1)

where lower case letters indicate that the variables are log-transformed. The formulation in

(1) implies the same elasticity of substitution between all input factors within each industry,

denoted σi.

In (1) δi1t, . . . , δiNBt are time-varying distribution parameters for industry i, where δijt ≥ 0

(∀i, j, t) and ∑NB

k=1 δikt = 1 (∀i, t). With a Cobb-Douglas technology, i.e. when σi = 1, these

time-varying distribution parameters express the optimal cost shares for the input factors. The

time-dependence of the δ’s is interpreted as capturing factor-biased (or factor-augmenting)

technological changes.2 The latent stochastic variable θit represents the factor-neutral technol-

ogy level. The parameter κi denotes the elasticity of scale in industry i.

In general, the expression of the weighted factor price, piAt, is rather complicated. How-

ever, if σ = 1 (i.e. with a Cobb-Douglas production function), it is simply the weighted average

of the different input factors, where the weight is equal to the optimal cost share. In order to

calculate the weighted factor prices piAt, I use

piAt =
NB

∑
k=1

ζ ik pikt, (2)

where ζ ik is the weight of input factor k in industry i, where ζ ij ≥ 0 (∀i, j) and ∑NB

k=1 ζ ik = 1

(∀i, t). The joint process of the factor-neutral technological level and the distribution parame-

ters follows a deterministic trend and some common factors:

σi ln δijt −
1
κi

θit = μij + γijt + λ′
ij f ∗ijt, (3)

where f ∗ijt is a vector of common factors and λij is the corresponding vector of parameters. The

vector f ∗ijt includes subscripts for both the industry i and the input factor j as the vector can

include both industry and input factor-specific common factors.

1See Appendix A in Hungnes (2011) for how the factor demand function is derived.
2However, as also pointed out in Hungnes (2011), the parameter instability may also be due to other reasons,

such as aggregation (over firms) effects.
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3 Common factors

In this section I present a heterogeneous model with two cross-sectional dimensions and with

common factors. Capital letters are used to distinguish the variables in the current section

from the variables in the previous section.

Yijt = α′
ijDt + β′

ijXijt + Eijt,

i = 1, . . . , NA,

j = 1, . . . , NB,

t = 1, . . . , T.

(4)

Here, Yijt is the observation of the endogenous variable for unit i in the first cross-sectional

dimension and unit j in the second cross-sectional dimension at time t. For example, the first

cross-sectional dimension can be country and the second cross-sectional dimension can be

industry. Here, however, I will refer to the first cross-sectional dimension as industry and

the second cross-sectional dimension as input factors. Hence, for each time period t, we have

observations of the endogenous variable for different input factors in different industries.

The vector Dt contains n deterministic variables such as an intercept and a trend. In addi-

tion, it can contain macro variables that are equal across both cross-sectional dimensions. The

oil price could be an example of such a variable.

The vector Xijt contains k variables that we assume differ in at least one of the cross-

sectional dimensions. In most of the presentation, I will assume that all observations in Xijt

are unique in both cross-sectional dimensions, since this will simplify the presentation. How-

ever, it will be convenient to partition this vector as X′
ijt =

(
xA′

it , xB′
jt , x′ijt

)
, where xA

it is a vector

of the k1 variables that only differs in the first dimension (i.e. in the industry dimension), xB
jt

is a vector of k2 variables that only differs in the second dimension (the input factor dimen-

sion), and xijt is a vector of the k3 variables that varies in both dimensions; k = k1 + k2 + k3.

The coefficient vector βij is partitioned similarly; β′
ij =

(
βA′

ij , βB′
ij , βC′

ij

)
. When including both

industry-specific and input factor-specific common factors, βA
ij and βB

ij are not identifiable be-

cause the effect from the exogenous variables xA
it and xB

jt cannot be distinguished from the

common factors. Hence, only βC
ij can be identified.
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The exogenous variables follow the process

Xijt = A′
ijDt + V∗

ijt. (5)

Combining equations (4) and (5) yields

Zijt =






Yijt

Xijt




 = B′

ijDt + U∗
ijt (6)

where

U∗
ijt =






Eijt + β′
ijV

∗
ijt

V∗
ijt




 and Bij =

(

αij Aij

)





1 0

βij Ik




 .

The errors can have one of the following multi-factor structures:

U∗
ijt =






Uijt alternative 0

C′
ij ft + Uijt alternative I

CA′
ij f A

it + Uijt alternative II

C′
ij ft + CA′

ij f A
it + Uijt alternative III

C′
ij ft + CA′

ij f A
it + CB′

ij f B
jt + Uijt alternative IV

(7)

where ft, f A
it and f B

jt are vectors of common factors with dimension m0, m1 and m2, respectively.

Furthermore,

Cij =
(

γij Γij

)





1 0

βij Ik






CA
ij =

(

γA
j ΓA

j

)





1 0

βij Ik




 , and

CB
ij =

(

γB
i ΓB

i

)





1 0

βij Ik




 .
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Here, γij, γA
j and γB

i — which are vectors of dimension m0, m1 and m2, respectively — are the

coefficient vectors for how the common factors affect the endogenous variable. Hence, with the

multi-factor structure in alternative IV, we have Eijt = γ′
ij ft + γA′

j f A
it + γB′

i f B
jt + εijt. Similarly,

Γij, ΓA
j and ΓB

i — which are matrices of dimension m0 × k, m1 × k and m2 × k, respectively —

are the coefficient matrices for how the common factors affect the exogenous variables, such

that V∗
ijt = Γ′

ij ft + ΓA′
j f A

it + ΓB′
i f B

jt + Vijt. Combining this with (5) implies that the exogenous

variables in X are allowed to be correlated with the common factors. Finally, we have U′
ijt =

(
ε′ijt + V ′

ijtβij, V ′
ijt

)
.

The system in (6) and (7) implies that the exogenous variables are allowed to be correlated

with the common factors. The exception is the multi-factor structure in alternative 0, where no

common factors are included.

The multi-factor structure in alternative I is similar to the one considered in Pesaran (2006).

This formulation of multi-factor structure implies that we do not consider the two cross-

sectional dimensions explicitly. Hence, we could have stacked the two cross-sectional dimen-

sions into one cross-sectional dimension.

The multi-factor structure in alternative II is also similar to the one considered in Pesaran

(2006) when each of the NA cross-sectional data sets is considered separately.

The multi-factor structure in alternative III implies that we combine overall common fac-

tors ( ft) with common factors that differ across the first dimension (here; the industry dimen-

sion, denoted f A
it ).3 This multi-factor structure is a combination of I and II.

The multi-factor structure in alternative IV implies that factors that are specific to both of

the two cross-sectional dimensions are included; i.e. including both factors that are industry-

specific and factors that are input factor-specific. These are included in addition to factors that

are common to all combinations of industry and input factor.

Note that the multi-factor structure U∗
ijt = CA′

ij f A
it + CB′

ij f B
jt + Uijt (i.e., the multi-factor struc-

ture IV with C′
ij = 0) is not included above. It turns out that proxies for the common factors

should be the same as in the case of multi-structure IV (although it can be simplified if both

of the cross-sectional dimensions are large). This multi-factor structure is therefore not consid-

3For example, these could be country-specific factors. This choice of multi-factor structure could be appropriate
if the first cross-time dimension is countries and the second is individuals or firms. Then we would not expect
there to be a particular common factor between individual (or firm) j in countries 1 and 2.
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ered separately.

Under some assumptions, which are set out below, observable proxies can be derived for

the common factors. These proxies are constructed as weighted averages of the observable

variables. Let wA
j define the weights in the first cross-sectional dimension (here, of input factors

within an industry) with ∑j wA
j = 1; and let wB

i define the weights in the second cross-sectional

dimension (here, of an input factor across industries) with ∑i wB
i = 1. Additional conditions

for these weights are given in Assumption 3.5.

Summary 3.1 Observable proxies for the common factors with the various multi-factor structures are

given as:

• With multi-factor structure I — i.e., U∗
ijt = C′

ij ft + Uijt — the vector of observable variables
(

D′
t, Z

′
t

)′

with Zt = ∑NB

j=1 wA
j ∑NA

i=1 wB
i Zijt can be used as a proxy for the common factors. This implies that k + 1

additional regressors are included in the regression to approximate for the common factors. This result

follows from Pesaran (2006).

• With multi-factor structure II — U∗
ijt = CA′

ij f A
it + Uijt — the vector of observable variables

(
D′

t, Z
′
i.t

)′

with Zi.t = ∑NB

j=1 wA
j Zijt can be used as a proxy for the common factors. This result follows from Pesaran

(2006). Note, however, that ∑NB

j=1 wA
j xA

it = xA
it , so these k1 cross-sectional means are already included

in the regressions. Hence, this implies that we are only including k2 + k3 + 1 additional variables in the

regression to proxy for the common factors.4

• With multi-factor structure III — U∗
ijt = C′

ij ft + CA′
ij f A

it + Uijt — the vector of observable variables
(

D′
t, Z

′
t, Zi.t

)′
, with Zt and Zi.t defined above, can be used as a proxy for the common factors. This

result is shown below. Note that ∑NB

j=1 wA
j ∑NA

i=1 wB
i xB

jt = ∑NB

j=1 wA
j xB

jt, where the k2 averages on the left-

hand side are included in Zt and the k2 averages on the right-hand side are included in Zi.t. In addition

to the fact that ∑NB

j=1 wA
j xA

it = xA
it (see the bullet point above), this implies that k + k3 + 1 additional

averages are included here to serve as proxies for the common factors.

• With multi-factor structure IV — U∗
ijt = C′

ij ft + CA′
ij f A

it + CB′
ij f B

jt + Uijt — the vector of observable

variables
(

D′
t, Z

′
t, Zi.t, Z.jt

)′
, with Z.jt = ∑NA

i=1 wBZijt and with Zt and Zi.t defined above, can be used

as a proxy for the common factors. This result is shown below. This implies that k + 2k3 + 1 additional

averages are included to serve as proxies for the common factors. The same proxies for the common

4Again this is consistent with Pesaran (2006), as he groups the variables in xA
it together with Dt.
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factors can be used with the multi-factor structure U∗
ijt = CA′

ij f A
it + CB′

ij f B
jt + Uijt (i.e., when γij = 0

and Γij = 0).

Remark 3.0.1 Note that Dt is a part of the proxies for the common factor. This implies that, when

including the proxies for the common factors, we cannot distinguish between the direct effect of the

variables in Dt and the effect through the proxies, see Pesaran (2006). A similar argument implies that

we cannot identify the direct effect of xA
it (when Zi.t is used as part of the proxies) and xB

it (when Z.jt is

used as part of the proxies).

3.1 Deriving the proxies for the common factors

In this section, I consider the most general formulation of the multi-factor structure and derive

the proxies from this formulation. Based on the expressions for the proxies, we can see how

they change when one considers simpler forms of the multi-factor error structure.

Combining equation (6) with multi-factor error structure IV in (7) yields

Zijt =






Yijt

Xijt




 = B′

ijDt + CA′
ij f A

it + CB′
ij f B

jt + C′
ij ft + Uijt. (8)

Pesaran (2006) presents five assumptions for his formulation of the heterogeneous panel

with multi-factor error structure. These assumptions are summarised below and extended

in the present model by two cross-section dimensions. In this section ‖A‖ =
(
tr(AA′)

)
1/2

denotes the Euclidean norm of the matrix A; A− denotes a generalized inverse of A; and
p
→

denotes convergence in probability.

Assumption 3.1 Common effects:
(

D′
t, f ′t , f A′

it , f B′
jt

)′
is covariance stationary with absolute summ-

able auto-covariances and distributed independently of the errors εijt′ and Vijt′ for all i, j, t and t′.

Assumption 3.2 Errors: The errors εijt and Vijt′ are distributed independently for all i, j, t and t′.

For each i and j, εijt and Vijt′ follows linear stationary processes with absolute summable autocovari-

ances, εijt = ∑∞
`=0 aij`ζ ij,t−` and Vijt = ∑∞

`=0 Sij`νij,t−`, where
(

ζ ′ijt, ν′ijt

)′
are (k + 1) × 1 vectors

of identically, independently distributed random variables with zero mean, covariance matrix, Ik+1,

and finite fourth order cumulations. In particular, Var(εijt) = ∑∞
`=0 a2

ij` = σ2
ij ≤ σ2 < ∞, and
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Var(Vijt) = ∑∞
`=0 Sij`S′

ij` = Σ2
ij ≤ Σ

2
< ∞ for all i and j and some constants σ2 and Σ, where Σij is a

positive definite matrix.

Assumption 3.3 Factor-loadings: The unobserved factor loadings are independently and identically

distributed as

γij = γ + η0
ij, η0

ij ∼ I ID
(

0, Ωη0

)
for i = 1, . . . , NA and j = 1, . . . , NB,

γA
j = γA + ηA

j , ηA
j ∼ I ID

(
0, ΩηA

)
for j = 1, . . . , NB,

γB
i = γB + ηB

i , ηB
i ∼ I ID

(
0, ΩηB

)
for i = 1, . . . , NA,

where Ωη is an m0 × m0 symmetric non-negative definite matrix; ΩηA is an m1 × m1 symmetric non-

negative definite matrix; and ΩηB is an m2 × m2 symmetric non-negative definite matrix. The vectors

η0
ij, ηA

j , ηB
i are distributed independently of each other and independently of the errors εijt and Vijt and

the common factors
(

D′
t, f ′t , f A′

it , f B′
jt

)′
for all i, j, t. Furthermore, ‖γ‖ < K, ‖γA‖ < K, ‖γB‖ < K,

‖Ωη0‖ < K, ‖ΩηA‖ < K, and ‖ΩηB‖ < K for some positive constant K < ∞. Similarly, vec
(
Γij
)
,

vec
(

ΓA
j

)
and vec

(
ΓB

i

)
(with dimension km0, km1 and km2, respectively) are also independently and

identically distributed with the same properties as γij, γA
j and γB

i .

Assumption 3.4 Random slope coefficients: The slope coefficients βij follow the random coefficient

model

βij = β + υ0
ij, υ0

ij ∼ I ID (0, Ωυ0) for i = 1, . . . , NA and j = 1, . . . , NB,

where Ωυ0 is a k × k symmetric non-negative definite matrix, and the random deviations υ0
ij are dis-

tributed independently of γij, γA
j , γB

i , Γij, ΓA
j , ΓB

i , εijt, Vijt, and
(

D′
t, f ′t , f A′

it , f B′
jt

)′
for all i, j, t. Finally,

‖β‖ < K, ‖Ωυ0‖ < K, ‖Ωυ1‖ < K, and ‖Ωυ2‖ < K for some positive constant K < ∞.

Remark 3.1.1 The assumptions for the distribution of γij and βij above imply that 1
NB ∑j βij −

1
NB ∑j βi′ j

p
→ 0 for i′ 6= i, i.e., the mean of the β-vector will converge to the same vector for all in-

dustries i. These assumptions could be refined such that

γij = γ + η0
ij + η1

i + η2
j ,






η0
ij ∼ I ID

(
0, Ωη0

)
,

η1
i ∼ I ID

(
0, Ωη1

)
,

η2
j ∼ I ID

(
0, Ωη2

)
,

for i = 1, . . . , NA and j = 1, . . . , NB,
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and

βij = β + υ0
ij + υ1

i + υ2
j ,






υ0
ij ∼ I ID (0, Ωυ0) ,

υ1
i ∼ I ID (0, Ωυ1) ,

υ2
j ∼ I ID (0, Ωυ2) ,

for i = 1, . . . , NA and j = 1, . . . , NB.

The derived proxies for the common factors will be the same with these more general assumptions, as is

shown in Appendix C.

Assumption 3.5 Identification of βij and β: The weights used to generate cross-sectional averages

in the two cross-sectional dimensions satisfy the conditions

wA
j = O

(
1

NB

)
, ∑NB

j=1 wA
j = 1, ∑NB

j=1 |w
A
j | < K,

wB
i = O

(
1

NA

)
, ∑NA

i=1 wB
i = 1, ∑NA

i=1 |w
B
i | < K,

Let

Mwij = IT − Hwij

(
H′

wij Hwij

)−
H′

wij, and (9)

Mgij = IT − Gij

(
G′

ijGij

)−
G′

ij, (10)

where Hwij =
(

D Zwij

)

, Gij =
(

D F∗
ij

)

,

D =













D′
1

D′
2

...

D′
T













, F∗
ij =













f ′1 f A′
i1 f B′

j1

f ′2 f A′
i2 f B′

j2
...

...
...

f ′T f A′
iT f B′

jT













and Zwij =













Z0 Zi.0 Z.j0

Z1 Zi.1 Z.j1

...
...

...

ZT Zi.T Z.jT













,

with D being a T × n matrix of observed common factors; F∗
ij being a T × (m0 + m1 + m2) matrix of

unobservable common factors; and Zwij being a T × 3(k + 1) matrix of cross-sectional averages. Finally,

let Xij =
(
Xij1, Xij2, . . . , XijT

)′
denote the T × k matrix of individual-specific regressors.

(a) Identification of βij: The k× k matrices Ψ̂ijT = T−1
(

X′
ij MwijXij

)
and Ψ̂ijg = T−1

(
X′

ij MgijXij

)

are non-singular, and Ψ̂−1
ijT and Ψ̂−1

ijg have finite second-order moments for all i, j.
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(b) Identification of β: The k × k pooled observation matrix Ψ̂NA,NB,T defined by

Ψ̂NA,NB,T =
NB

∑
j=1

θA
j

NA

∑
i=1

θB
i Ψ̂ijT (11)

is non-singular for the scalar weights θA
j and θB

i that satisfy the conditions

θA
j = O

(
1

NB

)
, ∑NB

j=1 θA
j = 1, ∑NB

j=1 |θ
A
j | < K,

θB
i = O

(
1

NA

)
, ∑NA

i=1 θB
i = 1, ∑NA

i=1 |θ
B
i | < K.

Remark 3.1.2 The assumptions for the factor-loading parameter (Assumption 3.3) and the random

slope coefficients (Assumption 3.4) imply

Cw ≡ ∑
i

wB
i ∑

j

wA
j Cij

p
→ C, Ciw ≡ ∑

j

wA
j Cij

p
→ C, Cwj ≡ ∑

i

wB
i Cij

p
→ C,

C
A
w ≡ ∑

i

wB
i ∑

j

wA
j CA

ij
p
→ CA, C

A
iw ≡ ∑

j

wA
j CA

ij
p
→ CA, C

A
wj ≡ ∑

i

wB
i CA

ij
p
→ CA

j ,

C
B
w ≡ ∑

i

wB
i ∑

j

wA
j CB

ij
p
→ CB, C

B
iw ≡ ∑

j

wA
j CB

ij
p
→ CB

i , C
B
wj ≡ ∑

i

wB
i CB

ij
p
→ CB,

where

C =
(

γ Γ

)





1 0

β Ik




 ,

CA =
(

γA ΓA

)





1 0

β Ik




 , CA

j =
(

γA
j ΓA

j

)





1 0

β Ik




 ,

CB =
(

γB ΓB

)





1 0

β Ik




 , CB

i =
(

γB
i ΓB

i

)





1 0

βi Ik




 .
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Then

∑
i

wB
i ∑

j

wA
j

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
−

[
CA′ f A

t + CB′ f B
t + C′ ft

]
p
→ 0, (12)

∑
j

wA
j

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
−

[
CA′ f A

it + CB′
i f B

t + C′ ft

]
p
→ 0, (13)

∑
i

wB
i

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
−

[
CA′

j f A
t + CB′ f B

jt + C′ ft

]
p
→ 0, (14)

where f A
t = ∑i wB

i f A
it and f B

t = ∑j wA
j f B

jt .

Pesaran (2006) derives the cross-sectional weighted averages of a system that is similar to

(8). Here, since we have two cross-sectional dimensions, NA + NB + 1 averages of the vector

Zijt are generated: NA averages for each different unit in the first cross-sectional dimension;

another NB averages for each unit in the second cross-sectional dimension; and, finally, one

overall weighted average. Applying these averages to (8) yields

Zt = B
′
wDt + ∑

i
∑

j

wA
j wB

i

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
+ Ut,

Zi.t = B
′
iwDt + ∑

j

wA
j

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
+ U

A
it ,

Z.jt = B
′
wjDt + ∑

i

wB
i

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
+ U

B
jt,

where

B
′
w = ∑i ∑j wA

j wB
i B′

ij, Ut = ∑i ∑j wA
j wB

i Uijt,

B
′
iw = ∑j wA

j B′
ij, U

A
it = ∑j wA

j Uijt,

B
′
wj = ∑i wB

i B′
ij, U

B
jt = ∑i wB

i Uijt.

By applying the convergence in probability properties derived in Remark 3.1.2, we have

Zt − B
′
wDt −

[
CA′ f A

t + CB′ f B
t + C′ ft

]
p
→ 0, (15)

Zi.t − B
′
iwDt −

[
CA′ f A

it + CB′
i f B

t + C′ ft

]
p
→ 0, (16)

Z.jt − B
′
wjDt −

[
CA′

j f A
t + CB′ f B

jt + C′ ft

]
p
→ 0. (17)

Now, based on the proxy derived in Pesaran (2006), the following “solutions” are conjec-
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tured

ft − A
[

Zt − B
′
wDt

]
p
→ 0, (18)

f A
it − AA

i0

[
Zi.t − B

′
iwDt

]
− AA

i1

[
Zt − B

′
wDt

]
p
→ 0, (19)

f B
jt − AB

j0

[
Z.jt − B

′
wjDt

]
− AB

j1

[
Zt − B

′
wDt

]
p
→ 0, (20)

for some matrices A, AA
i0, AA

i1, AB
j0, AB

j1, where A is of dimension m0 × (k + 1); AA
i0 and AA

i1 are

both of dimension m1 × (k + 1); and AB
j0 and AB

j1 are both of dimension m2 × (k + 1). From

these expressions it follows that

f A
t −

(
AA

0 + AA
1

) [
Zt − B

′
wDt

]
p
→ 0, (21)

f B
t −

(
AB

0 + AB
1

) [
Zt − B

′
wDt

]
p
→ 0, (22)

where AA
0 = ∑i wB

i AA
i0, AA

1 = ∑i wB
i AA

i1, AB
0 = ∑j wA

j AB
j0, and AB

1 = ∑j wA
j AB

j1.

From (18) it follows that m0 linear combinations of the averages in Zt (adjusted for the

deterministic variables in Dt) express the common factors. Hence, it is only necessary to inves-

tigate the expression in (15) given by the space spanned by the m0 row vectors in A. To find

the expression for A we pre-multiply (15) by the unknown A, apply (18), (21) and (22), and set

this equal to zero. This yields the identity

A − ACA′
(

AA
0 + AA

1

)
− ACB′

(
AB

0 + AB
1

)
− AC′A = 0,

which implies

A =
(
CC′)− C

[
I − CA′

(
AA

0 + AA
1

)
− CB′

(
AB

0 + AB
1

)]
. (23)

Similarly, pre-multiplying (16) with AA
i0 and applying (18)–(22) yields the following indirect

solutions for AA
i0 and AA

i1:

AA
i0 − AA

i0CA′AA
i0 = 0,

AA
i0CA′AA

i1 + AA
i0CB′

i

(
AB

0 + AB
1

)
+ AA

i0C′A = 0,

17



which gives

AA
i0 =

(
CACA′

)−
CA, (24)

AA
i1 = −

(
CACA′

)−
CA
[
CB′

i

(
AB

0 + AB
1

)
+ C′

i A
]

. (25)

Finally, applying the same procedure to (17) yields

AB
j0 =

(
CBCB′

)−
CB, (26)

AB
j1 = −

(
CBCB′

)−
CB
[
CA′

j

(
AA

0 + AA
1

)
+ C′A

]
. (27)

Hence, this gives explicit solutions for AA
i0 and AB

j0 and, hence, also for AA
0 and AB

0 :

AA
0 =

(
CACA′

)−
CA

AB
0 =

(
CBCB′

)−
CB

These expressions are now applied to derive the proxies for the different multi-factor error

structures:

• With the multi-factor structure in alternative I — U∗
ijt = C′

ij ft + Uijt, which implies that

CA
ij = CB

ij = 0 — it follows that A = (CC′)− C and AA
i0 = AA

i1 = AB
j0 = AB

j1 = 0. Therefore,
(

D′
t, Z

′
t

)′
can be used as an observable proxy. This expression corresponds to the one

found in Pesaran (2006).

• With the multi-factor structure in alternative II, it follows that C = 0 and CB = 0. Ap-

plying this in (23)–(27) yields AA
i0 =

(
CACA′

)−
CA and A = AA

i1 = AB
j0 = AB

j1 = 0, which

implies using
(

D′
t, Z

′
i.t

)′
as an observable proxy for the common factors.

• With the multi-factor structure in alternative III, it follows that CB = 0. Applying this in

(23)–(27) yields AB
j0 = AB

j1 = 0, AA
i0 =

(
CACA′

)−
CA, and indirect solutions for A and Ai0

given as

A =
(
CC′)− C

[
I − CA′

(
AA

0 + AA
1

)]
, (28)

AA
i1 = −

(
CACA′

)−
CAC′A. (29)

18



Hence,
(

D′
t, Z

′
t, Zi.t

)′
can be used as an observable proxy for the common factors.

• With the multi-factor structure in alternative IV; the coefficient matrices for A, AA
i0, AA

i1,AB
j0

and AB
j1 are indirectly given in (23)–(27). With none of the coefficient matrices equal to

zero, all of the proxies suggested in (18)–(20) must be included. Hence,
(

D′
t, Z

′
t, Zi.t, Z.jt

)′

can be used as an observable proxy for the common factors.

• With the multi-factor structure in alternative IV with C = 0, it follows that A = 0. How-

ever, since AA
i0, AA

i1,AB
j0 and AB

j1 generally will be non-zero, all the proxies in (19) and

(20) must be included. Hence, the vector of proxies is the same as for the multi-factor

structure IV without a zero-restriction on C imposed, see above.

The results in this section are derived as though all variables in Xijt vary in both cross-

sectional dimensions. If they do, all parameters in the vector βij can be estimated. However, if

they do not, some proxies for the common factors can be identical to an exogenous variable (i.e.

a variable in Xijt). Then we cannot distinguish between the direct effect of Xijt and the effect

from the common factor. This is similar to the problem of interpreting the coefficients for the

deterministic variables in D, as also noted by Pesaran (2006). For example, with multi-factor

structure in alternative II — i.e. U∗
ijt = CA′

ij f A
it + Uijt — then βA

ij cannot be estimated, because

we cannot distinguish between the exogenous variables xA
it and their cross-sectional averages

∑NB

j=1 wA
j xA

it = xA
it used to compose the common factors. However, in this example, both βB

ij

and βC
ij can be estimated and interpreted as the direct effect of the exogenous variable on the

endogenous variable. In the empirical section, the elasticity of substitution is the only param-

eter that can be interpreted as a direct effect of the exogenous variables on the endogenous

variable, as the corresponding variable in Xijt (the relative factor price) is the only variable in

Xijt that varies in both cross-sectional dimensions.

3.2 The number of common factors

The common factors are here approximated by different cross-sectional averages. That implies

that there is a limit to how many common factors can be approximated. In our multi-factor

structure I, it follows from Pesaran (2006) that, to be able to approximate the common factors
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with this approach, the following assumption must be fulfilled: rank(Cw) = m0 (where m0 is

the number of common factors). One implication of this assumption is that m0 ≤ k + 1, as Cw

is a (k + 1) × m0 matrix. Hence, the number of common factors cannot exceed the number of

cross-sectional averages that we add to the regression to proxy the common factors. Another

implication of the assumption that Cw must have full rank is that there must be enough linearly

independent variation in the cross-sectional averages to proxy the common factors.

For the multi-factor structure in alternative II, a sufficient assumption is rank(C
A
iw) = m1 ≤

k2 + k3 + 1.

For the multi-factor structure in alternative III, sufficient rank restrictions are

rank






Cw

C
A
w




 = m0 + m1 ≤ k + 1

and rank(C
A
iw) ≤ k2 + k3 + 1.

For the multi-factor structure in alternative IV, the following assumption must hold to make

it possible to proxy the common factors:

Assumption 3.6 We assume

(a) rank









Cw

C
A
w

C
B
w









= m0 + m1 + m2 ≤ k + 1

(b) rank(C
A
iw) ≤ k2 + k3 + 1, and

(c) rank(C
B
wj) ≤ k1 + k3 + 1.

Assumption 3.6 can be used for all the alternative multi-factor structures. For example,

with the multi-factor structure in alternative III, we have C
B
w = 0 and m2 = 0, which implies

that conditions (a) and (b) in 3.6 are identical to this multi-factor structure presented above,

whereas condition (c) in 3.6 is obviously fulfilled.

3.3 Asymptotic property of the estimator

Here, I give a limiting result for the estimator of βij under the most general multi-factor struc-

ture (i.e. alternative IV) when the appropriate proxies for the common factors are included in
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the regression. In matrix notation, the model with the proxies for the common factors with

multi-factor structure IV can be written as

Yij = Xijβij + HwijΘ
∗
ij + ε∗ij, (30)

where

Yij =
(
Yij1, Yij2, . . . , YijT

)′
with dimension T × 1, (31)

Xij =
(
Xij1, Xij2, . . . , XijT

)′
with dimension T × k, (32)

ε∗ij =
(

ε∗ij1, ε∗ij2, . . . , ε∗ijT

)′
with dimension T × 1, (33)

and Hwij =
(

D, Z, Zi., Z.j
)
, where

D = (d1, d2, . . . , dT)′ with dimension T × n, (34)

Z =
(
Z1, Z2, . . . , ZT

)′
with dimension T × (k + 1), (35)

Zi. =
(
Zi.1, Zi.2, . . . , Zi.T

)′
with dimension T × (k + 1), (36)

Z.j =
(
Z.j1, Z.j2, . . . , Z.jT

)′
with dimension T × (k + 1). (37)

The estimator of βij is

b̂ij =
(

X′
ij MwXij

)−1 (
X′

ij MwYij

)
, (38)

where Mw = IT − Hw (H′
wHw)−1 H′

w.

Furthermore, let Gij =
(

D, F, Fi., F.j
)
, where D is defined above and

F = ( f1, f2, . . . , fT)′ with dimension T × m0, (39)

Fi. =
(

f A
i1 , f A

i2 , . . . , f A
iT

)′
with dimension T × m1, (40)

F.j =
(

f B
j1, f B

j2, . . . , f B
jT

)′
with dimension T × m2. (41)

Proposition 3.1 Under the multi-factor structure in alternative IV and Assumptions 3.1–3.6, the fol-
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lowing limiting result for the estimator in (38) is given by:

b̂ij − βij =

(
X′

ij MgijXij

T

)−1(X′
ij Mgijεij

T

)

+Op

(
1

NA

)

+ Op

(
1

NB

)

+ Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

, (42)

where Mgij = IT − Gij

(
G′

ijGij

)−
G′

ij. Since εij is distributed independently of Xij and Gij, then, for a

fixed T and NA → ∞ and NA → ∞, we have E
(

b̂ij − βij

)
= 0.

The proof is given in Appendix A.

The proposition shows that the proposed estimator is asymptotically unbiased.

4 Monte Carlo experiment

In a Monte Carlo experiment, I consider the following data-generating process with only one

exogenous variable:

yijt = βijxijt + γA
yij f A

it + γB
yij f B

jt + εijt, (43)

xijt = γA
xij f A

it + γB
xij f B

jt + vijt, (44)

for i = 1, . . . , NA, j = 1, . . . , NB and t = 1, . . . , T and where the common factors ( f A
it and f B

jt )

and the error terms (vijt and εijt) all follow AR(1) processes given by

f A
it = ρA

f i f A
it−1 + υA

f it, with υA
f it ∼ NIID

(

0, 1 −
(

ρA
f i

)2
)

for t = 1, . . . , T

with fi0 ∼ NIID(0, 1), ρA
f i = 0.5, for i = 1, . . . , NA

f B
jt = ρB

f j f B
jt−1 + υB

f jt, with υB
f jt ∼ NIID

(

0, 1 −
(

ρB
f j

)2
)

for t = 1, . . . , T

with f j0 ∼ NIID(0, 1), ρB
f j = 0.5, for j = 1, . . . , NB

vijt = ρijvijt−1 + υijt, with υijt ∼ NIID
(

0, 1 − ρ2
ijt

)
for t = 1, . . . , T

with vijt ∼ NIID(0, 1), ρij = 0.5, for i = 1, . . . , NA and j = 1, . . . , NB
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and

εijt = ρεiεijt−1 + υεijt, with υεjt ∼ NIID
(

0, 1 − ρ2
εij

)
for t = 1, . . . , T

with εij0 ∼ NIID(0, 1), ρεij = 0.5 for i = 1, . . . , NA and j = 1, . . . , NB.

This data-generating process implies that there is one common factor for each i (i = 1, . . . , NA)

and one common factor for each j (j = 1, . . . , NB). Hence, in the full system NA + NB indepen-

dent common factors are included. The data-generating process also implies that all variables

follow stationary processes.

In these simulations, the parameters are fixed across replications. For each replication, the

“Common Correlated Effects Mean Group Estimator” (CCEMG) β̂MG =
(

NANB
)−1

∑NA

i=1 ∑NB

j=1 β̂ij

is estimated for each of the specifications of the common factor. In Table 1, the mean over all

replications is reported. In addition, the smallest estimate (min) and the highest estimate (max)

of all replications are reported. Finally, the standard deviation of the distribution of βMG over

the replications is reported. These numbers are reported for different specifications of the

proxies used for the common factors.

In Table 1, I consider seven different estimators of β. They all differ with respect to which

variables are included as proxies for the common factors. The first estimator — denoted the

‘infeasible’ estimator — is the estimator where the common factors themselves are included in

the regression. It is denoted ‘infeasible’ as we assume that these common factors are unobserv-

able, and — hence — cannot be included directly in the regression. These results are included

to provide a benchmark for how well we could estimate β if all information were available.

The asymptotic bias for this estimator is zero, as reported in the first column in the upper part

of Table 1.

In the middle part of Table 1, simulation results with a relatively large data set are re-

ported. In the lower part of the table, simulation results with the same parameters in the

data-generating process are used with a relatively small data set. Simulations with other pa-

rameter values are also conducted, but the results from them show a similar picture as the one

reported in the table.5

5The Monte Carlo simulation is programmed in Ox Professional, see Doornik (2013), and the code is available
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Table 1: Results from simulations: β̂MG
infeasible naı̈ve overall c.f. industry-sp. c.f. both all special

Proxies

(
f A
it

f B
jt

)

0

(
ȳt

x̄t

) (
ȳit

x̄it

)






ȳt

x̄t

ȳit

x̄it

















ȳt

x̄t

ȳit

x̄it

ȳjt

x̄jt

















ȳit

x̄it

ȳjt

x̄jt







Asympt. bias 0 2/3 2/3 1/2 1/2 0 0
In the table, “c.f.” is used for “common factors” and “industry-sp” is short for “industry-specific”.

infeasible naı̈ve overall c.f. industry-sp. c.f. both all special
mean 1.0000 1.6665 1.6643 1.4999 1.4999 1.0000 1.0191
min 0.9952 1.6566 1.6537 1.4830 1.4823 0.9953 1.0100
max 1.0034 1.6748 1.6726 1.5136 1.5139 1.0037 1.0320
st.d. 0.0013 0.0029 0.0030 0.0046 0.0047 0.0013 0.0035

In this simulation: 1000 replications, NA = NB = 100, T = 100, ρA
f i = ρB

f j = ρij = ρεij = 0.5, ∀i, j,

βij = 1, ∀i, j, γA
yij = γB

yij = γA
xij = γB

xij = 1, ∀i, j.

infeasible naı̈ve overall c.f. industry-sp. c.f. both all special
mean 1.0001 1.6672 1.6448 1.5023 1.4994 0.9969 1.1468
min 0.8349 1.5308 1.4924 1.2824 1.2261 0.2390 0.8838
max 1.1679 1.8012 1.8147 1.6770 1.7002 1.3694 1.3425
st.d. 0.0522 0.0398 0.0470 0.0615 0.0729 0.1024 0.0770

In this simulation: As above, except NA = NB = 10, T = 10.

The second estimator I consider is denoted ‘naı̈ve’ in the table. These are the results from

the regression where no proxies for the common factors are included in the regression. Hence,

the endogenous variable is here only regressed on the exogenous variable in addition to an

intercept. In Appendix B, it is shown that the asymptotic bias with this estimator is 2/3 with

the data-generating process considered here. The simulation results confirm that the estimates

are very biased and close to the asymptotic bias for both sample sizes, showing that neglecting

the common factors can lead to large estimation biases.

The results for the third estimator I consider are reported in the column ‘overall c.f.’ in the

table. Here the overall common factors are included, i.e. yt =
(

NANB
)−1

∑i ∑j yijt and xt =
(

NANB
)−1

∑i ∑j xijt are included in addition to xijt and an intercept. With a relatively large

data set, see the upper part of the table, the bias is approximately as for the ‘naı̈ve’ estimator.

With a smaller data set, see the lower part of the table, the bias is somewhat smaller. In a

large data set — i.e. when NA and NB are large — the variation in yt and xt is negligible

from www.hungnes.net.
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compared to the variation in xijt. Hence, the correlation between these two proxies and xijt is

small and including them does not matter much for the estimated coefficient of xijt. However,

in a small data set yt is correlated with yit and yjt
(and similarly for xt), which reduces the bias

somewhat.6

The forth estimator is considered in the column ‘industry-sp. c.f.’ where (yit, xit)′ is used

as a proxy for f A
i . It can be shown that the bias will converge to 1/2 if the proxy converges to

f A
i . This is indeed the case, both in the large and in the small data set, indicating that the proxy

is very good for f A
i . However, the omission of a proxy for f B

j still leads to a large bias.

The fifth estimator is considered in the column ‘both’, where both (yit, xit)′ and (yt, xt)′ are

used as proxies. The bias is almost identical as in the case when only (yit, xit)′ is used as a

proxy.

The sixth estimator is considered in the column ‘all’, where (yit, xit, yjt
, xjt

, yt, xt)′ is used as

a proxy for f A
it and f B

jt . Here the estimator is almost as good as the infeasible estimator in the

relatively large data set. Also in the small sample, the estimator has a small bias, measured as

the deviation of the mean of the estimates over the replications and the true value. However,

the standard deviation is twice that for the infeasible estimator, and, for one of the replications,

the estimate is as low as 0.239. The reason for the relatively high uncertainty in the estimates

is that very many parameters need to be estimated compared to the number of observations.

For each replication and combination of industry and input factors, we have 10+1 observations

(including the initial observation) to estimate the parameter for xijt and the intercept and six

variables used to proxy the common factors.

Finally, in the column ‘special’ the results for the seventh estimator are reported. Here

(yit, xit, yjt
, xjt

)′ is used as a proxy for f A
it and f B

jt , i.e., yt and xt are not used in the set of

variables proxying the common factors. Excluding the overall averages leads to a bias, but the

bias decreases with the size of the data set. The reason is that, in our data-generating process,

both yt and xt become closer and closer to a constant as the data set increases, meaning that the

variation in (yt, xt)′ is negligible in relation to the remaining proxies. Therefore, they become

less and less important to include as proxies. Hence, this indicates that, if NA ∙ NB is large,

6For example, if, say, NA = 1, then xt = xit and yt = yit for i = 1. Hence, the proxies for the overall common
factors are equal to the proxies for the industry-specific common factors. Therefore, the bias would be the same as
the one reported in the column ‘industry-sp. c.f.’, which is equal to 1/2.
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(yt, xt)′ can be excluded from the proxy for the common factors when no overall common

factors are included. On the other hand, if we are only interested in the mean-group estimator

βMG, the gain of doing so is negligible since the degree of freedom is large. However, if we are

interested in the estimates of individual βij’s, excluding yt and xt from the proxy may yield

more precise estimates.

5 Construction of proxies for the common factors

The endogenous variable used in the analysis is vijt = log(Vijt), where Vijt is the use of input

factor j in industry i at time t. The deterministic variables are an intercept and a trend; Dt =

(1, t)′. The exogenous variables used in the analysis are relative price, pijt − pAjt = log
(

Pijt

PAjt

)
,

and production (measured as output in an industry), xit = log(Xit), where the former is unique

to all combinations of industries and input factor, whereas the latter is only industry-specific.

5.1 Averages within industries

Let wj|i, where ∑j wj|i = 1, be the weight of input factor j in industry i. The notation implies

that the relative weights of the different input factors can differ across industries. The weighted

cross-section means are given by;

vi.t = ∑
j

wj|i ∙ vijt (45)

pi.t − piAt = ∑
j

wj|i
(

pijt − piAt
)

= ∑
j

wj|i ∙ pijt − piAt (46)

xi.t = ∑
j

wj|i ∙ xit

= xit (47)

The weighted average factor price piAt is given by

piAt = ∑
j

ζ j|i pijt (48)
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Table 2: Cost shares (ζ i|j) = weights (wj|i), in per cent
Industry L E F FT M K10 K30 K40 K50 K60
01: Agriculture etc. 35.8 1.5 0.5 1.8 27.4 21.6 — 0.7 10.7 0.0
02: Fishing and hunting 49.4 — 0.2 7.3 25.6 — 16.0 — 1.4 0.1
03: Aquaculture 10.3 — — 0.4 82.8 2.0 1.8 0.7 1.2 0.9
04: Consumer goods 15.5 0.9 0.2 0.3 75.6 2.9 — 0.3 3.9 0.5
05: Intermediate goods etc. 24.1 1.3 0.6 0.7 61.7 3.9 — 0.4 5.7 1.5
06: Energy-intensive goods 11.2 7.6 0.8 0.1 64.7 5.5 — 0.1 9.0 1.0
07: Petroleum products 1.8 0.3 3.8 — 88.2 3.4 — 0.0 2.4 0.1
08: Engineering products 26.3 0.5 0.1 0.1 66.6 1.6 — 0.1 2.6 2.1
09: Construction 28.6 0.2 0.2 9.9 64.9 2.9 — 0.8 1.3 0.1
10: Banking and insurance 35.3 0.4 — 0.0 50.8 10.0 — 1.2 0.4 1.7
11: Electricity 13.0 4.9 — 1.0 16.9 31.1 — 0.3 32.1 0.7
12: R & D 42.2 — — — 28.1 4.0 — — 1.6 24.1
13: Domestic transport 31.0 0.4 1.0 6.4 48.6 4.2 3.2 3.7 1.4 0.2
14: Merchandising 42.9 1.1 0.4 0.7 48.4 3.6 — 0.7 1.8 0.4
15: Information services 33.4 0.3 0.1 0.3 54.4 2.4 — 0.2 5.9 2.9
16: Other private services 43.3 0.8 0.2 0.4 46.9 4.3 — 0.8 2.6 0.6
17: Leasing com. buildings 13.7 2.2 0.5 0.3 43.1 39.1 — — 1.0 0.1

L: man-hours (sum of employed and employees); E: intermediate consumption of electricity; F: interme-
diate consumption of heating oil; FT: intermediate consumption of transport oil; M: other intermediate
consumption; K10: real capital, buildings and constructions; K30: real capital, ships and fishing boats;
K40: real capital, cars; K50; real capital, machinery and equipment; K60: real capital, R&D and other
intangible assets. The symbol ‘—’ indicates that the input factor is not used in the industry (in at least
one time period), according to the national accounts.

where ζ j|i =
ζ∗j|i

∑k ζ∗k|i
with

ζ∗j|i =

[
H−1

∏
h=0

(
Pij,t−hVij,t−h

∑k Pik,t−hVik,t−h

)ω(1−ω)h] 1
1−(1−ω)H

(49)

This expression implies that the weights ζ j|i are constructed as a weighted average of the ob-

served (i.e. actual) cost shares such that the most recent observed cost share has the highest

weight.7

The expression includes two parameters that we need to set values for. The parameter H

expresses the number of observations we apply (e.g. it could equal to the number of observa-

tions, i.e. H = T, or one could use a smaller sample to derive these weights, i.e. H < T.). The

parameter ω expresses the weight put on the last observation if H is large. (If H is ‘small’, then

the weights are adjusted upwards, ensuring that the weights sums to unity.) The weights used

in the analysis are reported in Table 2.

7If the actual cost shares for each input factor are equal across time periods, then ∑k ζ∗k|i = 1.
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In the analysis, I use wj|i = ζ j|i, ∀i, j, i.e. the relative weights used here to calculate the

weighted variables are equal to the weights used to construct the weighted factor price piAt.

This implies that pi.t − piAt = 0 with pi.t = ∑j wj|i pijt, and — since this aggregated variable

does not vary over time — the corresponding coefficient cannot be estimated. Hence, the

variable is not included in the vector of additional variables to proxy the common factors

within industries.

Furthermore, since the weighted average of the production is equal to the production itself,

this variable is already included in the analysis. Therefore, the only additional variable that

must be included to approximate the common factors within the industries is vi.t.

5.2 Averages across industries

As proxy of the common factors across industries I use aggregates of the untransformed data,

i.e.

V.jt = ∑
i

Vijt (50)

P.jt

P.At
=

∑i
Pijt

PiAt
Vijt

V.jt
(51)

X.t = ∑
i

Xit (52)

The aggregated use of input factor j is the sum over all industries. The aggregated price of

factor j is constructed such that the relative prices of input factor j over all industries is a

weighted average of the relative price of that input factor over all industries, where the relative

use of that input factor in industry j is used as weight. Finally, the aggregated production is

the sum of production over all industries.8

One advantage of using proxies based on untransformed sums is that the proxy used for

one industry is independent of how other industries are defined. For example, the proxies used

for these common factors in the financial industry will be independent of whether agriculture

8 For these proxies I use aggregates instead of averages. However, this is not important, as I use log-transformed
data. That is, I use v.jt = log(V.jt). If I had used averages such as v.jt = log(V.jt/NA) = log(Vi.t) − log(NA).
Hence, these would only differ by a constant, and would only change the estimates of the intercepts. Otherwise,
the estimation results are unaffected. Since I do not report the estimates of these intercepts, all reported estimates
would be the same if I had used averages instead of sums for these proxies.
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and fishing are seen as two separate industries or aggregated into one industry.

5.3 Fully aggregated variables

The fully aggregated variable for the input factor is defined by

V..t = ∑
i

Vi.t. (53)

Note that
P..t

P.At
=

∑i
Pi.t
PiAt

Vi.t

V..t
= 1 since

Pi.t

PiAt
= 1, (54)

which does not vary over time. Hence, this is just a constant and not necessary to include as

an additional variable in the regression because an intercept is already included.

Finally, the aggregate of production,

X.t = ∑
j

Xjt, (55)

is identical to the aggregate of production derived from averages across industries.

6 Estimation results

In this section, I apply the estimators considered in Section 3 to the data series constructed

in Section 5. The results are reported in Table 3. I apply quarterly data from the Norwegian

national accounts. The estimation period is 1980q1 – 2013q4. The estimation is conducted

using PcGive, see Doornik and Hendry (2013).

The first column shows the results when no proxies for common factors are included. In the

estimation, I have imposed the additional restriction that the elasticity of substitution is equal

across input factors within each industry.9 Hence, for each industry, the following regression

9However, I have not imposed the restriction that the coefficient for the elasticity of scale is the same across
input factors within an industry. The reason for the latter is that this restriction is impossible to impose when
proxies for the common factors are included (as the cross-sectional average of production in an industry is equal to
the production, and — hence —makes it impossible to distinguish between the direct effect of production (which
is given by the inverse of the elasticity of scale) and the effect of production as a proxy for common factors).

29



is estimated:

vi,j,t = α0ij + α1ijxi,t − σi
(

pi,j,t − pi,A,t
)
+ εijt, (56)

for i = 1, . . . , NA, j = 1, . . . , NB and t = 1, . . . , T.

In the table, the estimate for the elasticity of substitution, σi, is reported for each industry.

As can be seen from the table, the estimate of the elasticity of substitution is negative in three

industries: these are the Fishing and hunting industry (02); the Petroleum products industry

(07); and the R & D industry (12). A negative elasticity of substitution implies that the industry

will use relatively more of an input factor that increases in price, contrary to economic theory.

In the second column in Table 3, the estimate of the elasticity of substitution is reported

when proxies for overall common factors are included. Here, the mean of production over

industries and the mean of the input factor use over all combinations of industries and input

factor types are used as proxies. The results are similar to the case without proxies for common

factors; in the same three industries, the estimated elasticity of substitution is negative.

The third column in Table 3 shows the estimation results for the case where it is assumed

that the common factors are industry-specific. In this case, the mean of the input factors within

each industry is used as a proxy for the common factor. With this formulation of the common

factor, there are still sign problems with the elasticity of substitution in two of the industries

(02, Fishing and hunting; and 07, Petroleum product). In the R & D industry (12), the estimated

elasticity of substitution is positive, though very close to zero (and not significantly different

from zero) — implying almost no substitution possibilities.

The fourth column in Table 3 shows the results when common factors are assumed to be

either overall or industry-specific (but no common factors that are input-specific). These esti-

mated elasticities of substitution are quite similar to the estimates when only industry-specific

common factors are considered (cf. the results in the third column).

In the final column of Table 3, all types of common factors are considered. That means

that in this column input-specific common factors are also allowed. Now, five variables are

used as proxies for the common factors, see the top right corner of Table 3. The reported

estimates of the elasticity of substitution are all positive, ranging from 0.2 (in the Fishing and
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Table 3: Estimated elasticity of substitution
no overall industry-specific both all types

Industry f = 0 ft =
(

x.t

v..t

)

ft =
(
vi.t
)

ft =




x.t

v..t

vi.t



 ft =









x.t

p.jt − p.At

vi.t

v..t

v.jt









Est. (std. err.) Est. (std. err.) Est. (std. err.) Est. (std. err.) Est. (std. err.)
01 0.522 (0.052) 0.478 (0.052) 0.451 (0.048) 0.399 (0.046) 0.216 (0.081)
02 -0.382 (0.047) -0.277 (0.045) -0.338 (0.049) -0.121 (0.048) 0.195 (0.061)
03 0.241 (0.052) 0.227 (0.050) 0.232 (0.047) 0.218 (0.045) 0.952 (0.071)
04 0.566 (0.046) 0.531 (0.046) 0.553 (0.043) 0.484 (0.043) 0.458 (0.096)
05 0.328 (0.044) 0.292 (0.044) 0.340 (0.041) 0.284 (0.041) 0.271 (0.082)
06 0.662 (0.044) 0.663 (0.044) 0.689 (0.041) 0.613 (0.042) 1.054 (0.059)
07 -0.141 (0.024) -0.099 (0.023) -0.104 (0.023) -0.053 (0.022) 0.211 (0.023)
08 0.823 (0.039) 0.691 (0.039) 0.813 (0.038) 0.626 (0.038) 0.939 (0.064)
09 0.356 (0.053) 0.336 (0.052) 0.332 (0.052) 0.264 (0.051) 0.521 (0.122)
10 0.439 (0.066) 0.473 (0.065) 0.676 (0.064) 0.444 (0.062) 0.836 (0.095)
11 0.597 (0.048) 0.551 (0.048) 0.271 (0.057) 0.236 (0.056) 0.402 (0.064)
12 -0.134 (0.103) -0.206 (0.103) 0.011 (0.097) 0.028 (0.097) 0.552 (0.147)
13 0.137 (0.044) 0.119 (0.043) 0.129 (0.043) 0.120 (0.039) 0.403 (0.106)
14 0.554 (0.052) 0.540 (0.050) 0.641 (0.049) 0.524 (0.045) 0.357 (0.091)
15 0.306 (0.053) 0.390 (0.055) 0.383 (0.052) 0.438 (0.050) 0.850 (0.089)
16 0.790 (0.046) 0.851 (0.047) 0.809 (0.044) 0.860 (0.042) 0.428 (0.092)
17 0.678 (0.073) 0.615 (0.070) 0.558 (0.074) 0.631 (0.069) 0.837 (0.092)
log.lik. -5525.6 -3487.21 -3596.77 -1082.02 4478.2
no. of par. 446 732 589 875 1161

For name of industies, see Table 2.

hunting industry, 02) to 1.05 (in the Energy-intensive goods industry, 06). In all industries, the

estimated elasticity of substitution is significantly different from zero.

7 Conclusions

In this paper, I have presented a procedure for estimating a system with two cross-sectional

dimensions and interdependence in both of these dimensions. The procedure is an extension

of the one in Pesaran (2006), where only one cross-sectional dimension is considered. The pro-

cedure is applied to estimate the elasticity of substitution between input factors where the two

cross-sectional dimensions are industry and input factor. Hence, the approach allows some

type of interdependence between input factors within one industry, but also interdependence

between the same input factors in different industries. These types of interdependencies can
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be due to technological changes. Such technological changes can both lead to changes in the

the relative use of input factors within an industry or across multiple industries. If the relative

prices are correlated with the process for the technological change, we get biased estimates of

the elasticity of substitution when not controlling for the technological changes.

The approach allows for a factor-neutral technological process. This process can differ

between industries. A factor-neutral technological process will have the same effect on the

optimal use of all input factors within each industry.

When estimating the substitution elasticity between up to 10 input factors within 17 in-

dustries, I find negative estimates in three industries when not including common factors to

account for technological changes. However, when controlling for all types of technological

changes, i.e. by including common factors both within and between industries, we get posi-

tive estimates of the substitution elasticities in all industries. Hence, these results illustrate the

importance of taking into account technological changes that can also work across industries.
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A Asymptotic properties

A.1 Asymptotic result for βij

Below A− denotes a generalized inverse of A.

Lemma A.1 Let Q, G and P be matrixes such that Q = GP and where P has full column rank. Then

Q (Q′Q)− Q′ = G (G′G)− G′.

Proof. First, Q (Q′Q)− Q′ = Q (Q′Q)+ Q′, where Q+ is the Moore-Penrose inverse of Q; see

e.g. Abadir and Magnus (2005, Exercise 10.54). Then Q (Q′Q)+ Q′ = QQ+ follows from

Abadir and Magnus (2005, Exercise 10.29). Inserting for Q we have QQ+ = GP (GP)+, and

applying that P has full row rank, it follows from Abadir and Magnus (2005, Exercise 10.40)

that GP (GP)+ = GG+. Applying all these results, we have the result in the lemma.

In matrix notation the model with the proxies for the common factors with multi-factor

structure IV can be written as

Yij = Xijβij + HwijΘ
∗
ij + ε∗ij, (57)

where Yij, Xij and ε∗ij are defined in (31)–(33); and Hwij =
(

D, Z, Zi., Z.j
)
, where D, Z, Zi. and

Z.j are defined in (34)–(37). The estimator of βij is

b̂ij =
(

X′
ij MwijXij

)−1 (
X′

ij MwijYij

)
, (58)

where Mwij = IT − Hwij

(
H′

wijHwij

)−1
H′

wij

The model with the common factors in matrix notation is given by

Yij = Xijβij + GijΘij + εij (59)

where εij =
(
εij1, εij2, . . . , εijT

)′
with dimension T × 1 and Gij =

(
D, F, Fi., F.j

)
where F, Fi. and

F.j are defined in (39)–(41) and Θij =
(

α′
ij, γ′

ij, γA′
ij , γB′

ij

)′
.
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Inserting this model into the estimator yields a similar expression as in Pesaran (2006, eq.

29);

b̂ij − βij =

(
X′

ij MwijXij

T

)−1(X′
ij MwijF

T

)

+

(
X′

ij MwijXij

T

)−1(X′
ij MwijFi.

T

)

+

(
X′

ij MwijXij

T

)−1(X′
ij MwijF.j

T

)

+

(
X′

ij MwijXij

T

)−1(X′
ij Mwijεij

T

)

=

(
X′

ij MwijXij

T

)−1(X′
ij MwijF∗

ij

T

)

+

(
X′

ij MwijXij

T

)−1(X′
ij Mwijεij

T

)

, (60)

where F∗
ij =

(
F, Fi., F.j

)
.

To evaluate this expression we need to apply the process for the exogenous variables

Xij = G∗
ijΠij + Vij (61)

and the proxies for the unobserved common factors

Hwij = G∗
ijPwij + U∗

wij (62)

where G∗
ij =

(
D, F, FA, FB, Fi., F.j

)
, Πij =

(
A′

ij, 0k×m1 , 0k×m2 , Γ′
ij, ΓA′

ij , ΓB′
ij

)′
, Vij =

(
vij1, vij2, . . . , vijT

)′
,

Pwij =



















In Bw Biw Bwj

0 Cw Ciw Cwj

0 C
A
w C

A
iw C

A
wj

0 C
B
w C

B
iw C

B
wj

0 0 C
A
iw 0

0 0 0 C
B
wj



















and U∗
wij =

(
0, Uw, Uiw, Ujw

)
with

Uw =
(
U1, U2, . . . , UT

)′
(63)

Uiw =
(

U
A
i1, U

A
i2, . . . , U

A
iT

)′
(64)

Ujw =
(

U
B
j1, U

B
j2, . . . , U

B
jT

)′
(65)
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Note that under Assumption 3.6 and assuming that both C
A
iw and C

B
wj have full rank, Pwij

has full row rank, i.e., rank(Pwij) = n + m0 + 2m1 + 2m2 , which follows from repeatedly using

that

Z = rank






A B

0 D




 ≥ rank(A) + rank(B),

see, e.g., Abadir and Magnus (2005, Exercise 5.4), which holds with equality if both A and

D have full row rank since the rank of Z cannot exceed its number of rows. If either C
A
iw or

C
B
wj does not have full row rank, we can modify Pwij to a matrix with n + m0 + m1 + m2 +

rank(C
A
iw) + rank(C

B
wj) rows and full row rank, and adjust G∗

ij accordingly.10

Using the results from the Lemma 2 and 3 in Pesaran (2006), but adjusted to the formulation

applied here, we have:

X′
ijHwij

T
=

X′
ijG

∗
ij

T
Pwij + Op

(
1

NA

)

+ Op

(
1

NB

)

+ Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

(66)

H′
wij Hwij

T
= P′

wij

G∗′
ij G∗

ij

T
Pwij + Op

(
1

NA

)

+ Op

(
1

NB

)

+Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

(67)

H′
wijF

∗
ij

T
= P′

wij

G∗′
ij F∗

ij

T
+ Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

(68)

Proof of Proposition 3.1. Applying the results in (66)–(68) gives

Xij MwijF∗
ij

T
=

Xij MqijF∗
ij

T
+ Op

(
1

NA

)

+ Op

(
1

NB

)

+ Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

(69)

10 These adjusted matrices are

P̃wij =














In Bw Biw Bwj

0 Cw Ciw Cwj

0 C
A
w C

A
iw C

A
wj

0 C
B
w C

B
iw C

B
wj

0 0 C̃
A
iw 0

0 0 0 C̃
B
wj














and G̃∗
ij =

(
D F FA FB F̃i F̃j

)
,

with F̃i. = Fi. Mi.
(

M′
i. Mi.

)−1, F̃.j = F.j M.j

(
M′

.j M.j

)−1
, C̃

A
iw = M′

i.C
A
iw, and C̃

B
wj = M′

.jC
B
wj, with Mi. and M.j being

matrices of dimension m1 × rank(C
A
iw) and m2 × rank(C

B
wj), respectively, such that both C̃

A
iw, and C̃

B
wj have full row

rank. This implies that Mi.⊥C
A
iw = 0 and M.j⊥C

B
wj = 0 (where M⊥ denotes the orthogonal complement to M, see,

e.g., Abadir and Magnus (2005, p. 46), such that we have G̃∗
ij P̃wij = G∗

ijPwij, where P̃wij has full rank.
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where Mqij = IT − Qwij

(
Q′

wijQwij

)−
Q′

wij with Qwij = G∗
ijPwij. When the rank conditions in

Assumption 3.6 hold, we have Mqij = Mgij = IT − G∗
ij

(
G∗′

ij G∗
ij

)−
G∗′

ij , see Lemma A.1. In

addition, since F∗
ij ⊂ G∗

ij, then MqijF∗
ij = MgijF∗

ij = 0, and

Xij MwijF∗
ij

T
= Op

(
1

NA

)

+ Op

(
1

NB

)

+ Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

(70)

Similarly, we have

Xij MwijX∗
ij

T
=

Xij MqijX∗
ij

T
+ Op

(
1

NA

)

+ Op

(
1

NB

)

+ Op

(
1

√
NAT

)

+ Op

(
1

√
NBT

)

(71)

and

Xij Mwijεij

T
=

Xij Mqijεij

T
+ Op

(
1

NA

)

+ Op

(
1

NB

)

, (72)

where we again can replace Mqij with Mgij when Assumption 3.6 holds. Finally, T−1X′
ij MqijXij =

Op(1), and we have the results in the proposition.

B Asymptotic biases in the Monte Carlo experiment

B.1 The naı̈ve estimator

Here the estimator is given by

β̂ij
naive

=
(

x′ij M1xij

)−1 (
x′ij M1yij

)
with M1 = IT − 1T×1

(
1′T×11T×1

)−1
1′1×1 = IT − T−11T×T,

where 1T×1 defines a vector of ones with dimension T. The data-generating process (DGP) is

given by

yij = αij + xijβij + f A
i γA

yij + f B
j γB

yij + εij with αij = 0.
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Inserting the latter into the former yields the following expression for the estimation bias

β̂ij
naive

− βij

=
(

T−1x′ij M1xij

)−1 [(
T−1x′ij M1 f A

i

)
γA

yij +
(

T−1x′ij M1 f B
j

)
γB

yij +
(

T−1x′ij M1εij

)]
. (73)

Inserting from the DGP for unobservable common factors, the nominator of the expression for

the bias in (73) becomes

(
T−1x′ij M1 f A

i

)
γA

yij +
(

T−1x′ij M1 f B
j

)
γB

yij +
(

T−1x′ij M1εij

)

= γA
xij

(
T−1 f A′

i M1 f A
i

)
γA

yij + γB
xij

(
T−1 f B′

j M1 f A
i

)
γA

yij +
(

T−1v′ij M1 f A
i

)
γA

yij

+γA
xij

(
T−1 f A′

i M1 f B
j

)
γB

yij + γB
xij

(
T−1 f B′

j M1 f B
j

)
γB

yij +
(

T−1v′ij M1 f B
j

)
γB

yij

+
(

T−1x′ij M1εij

)
,

where the terms γA
xij

(
T−1 f A′

i M1 f A
i

)
γA

yij and γB
xij

(
T−1 f B′

j M1 f B
j

)
γB

yij converge to unity by con-

struction of the data-generating process and the remaining terms converge to zero due to As-

sumption 3.2.

The denominator of the bias in (73) becomes (by applying (44))

(
T−1x′ij M1xij

)
=

(
T−1 f A

i
′M1 f A

i

)
+
(

T−1 f A
i
′M1 f B

j

)
+
(

T−1 f A
i
′M1vij

)

+
(

T−1 f B
j
′M1 f A

i

)
+
(

T−1 f B
j
′M1 f B

j

)
+
(

T−1 f B
j
′M1vij

)

+
(

T−1v′ij M1 f A
i

)
+
(

T−1v′ij M1 f B
j

)
+
(

T−1v′ij M1vij

)
,

and by construction of the data-generating process, the terms
(
T−1 f A

i
′M1 f A

i

)
,
(

T−1 f B
j
′M1 f B

j

)
,

and
(

T−1v′ij M1vij

)
converge to unity; and

(
T−1 f A

i
′M1 f B

j

)
and

(
T−1 f B

j
′M1 f A

i

)
converge to

zero. By Assumption 3.2 the terms
(
T−1 f A

i
′M1vij

)
,
(

T−1 f B
j
′M1vij

)
,
(

T−1v′ij M1 f A
i

)
, and

(
T−1v′ij M1 f B

j

)

converge to zero. Applying all this, the bias is given by

β̂ij
naive

− βij
p
→

2
3

.

The mean group estimator will have the same bias.
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C Accompanying note

Here, I consider how the derivation in Section 3.1 under Assumptions 3.1–3.5 changes when

applying the modification for γij and βij given in Remark 3.1.1. With these modifications the

results in Remark 3.1.2 change to

Remark C.0.1 The assumptions for the factor-loading parameter (Assumption 3) and the random slope

coefficients (Assumption 4) imply

Cw ≡ ∑
i

wB
i ∑

j

wA
j Cij

p
→ C, Ciw ≡ ∑

j

wA
j Cij

p
→ Ci, Cwj ≡ ∑

i

wB
i Cij

p
→ Cj,

C
A
w ≡ ∑

i

wB
i ∑

j

wA
j CA

ij
p
→ CA, C

A
iw ≡ ∑

j

wA
j CA

ij
p
→ CA

i , C
A
wj ≡ ∑

i

wB
i CA

ij
p
→ CA

j ,

C
B
w ≡ ∑

i

wB
i ∑

j

wA
j CB

ij
p
→ CB, CB

iw ≡ ∑
j

wA
j CB

ij
p
→ CB

i , C
B
wj ≡ ∑

i

wB
i CB

ij
p
→ CB

j ,

where

C =
(

γ Γ

)





1 0

β Ik




 , Ci =

(

γi. Γi

)





1 0

βi. Ik




 , Cj =

(

γ.j Γj

)





1 0

β.j Ik




 ,

CA =
(

γA ΓA

)





1 0

β Ik




 , CA

i =
(

γ ΓA

)





1 0

βi. Ik




 , CA

j =
(

γA
j ΓA

j

)





1 0

β.j Ik




 ,

CB =
(

γB ΓB

)





1 0

β Ik




 , CB

i =
(

γB
i ΓB

i

)





1 0

βi. Ik




 , CB

j =
(

γB ΓB

)





1 0

β.j Ik




 ,

with γi. = γ + η1
i , γ.j = γ + η2

j , βi. = β + υ1
i and β.j = β + υ2

j and similarly for Γi and Γj. Then

∑
i

wB
i ∑

j

wA
j

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
−

[
CA′ f A

t + CB′ f B
t + C′ ft

]
p
→ 0 (74)

∑
j

wA
j

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
−

[
CA′

i f A
it + CB′

i f B
t + Ci′ ft

]
p
→ 0 (75)

∑
i

wB
i

[
CA′

ij f A
it + CB′

ij f B
jt + C′

ij ft

]
−

[
CA′

j f A
t + CB′

j f B
jt + C′

j ft

]
p
→ 0 (76)

where f A
t = ∑i wB

i f A
it and f B

t = ∑j wA
j f B

jt .
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Equations (15)–(17) change to

Zt − B
′
wDt −

[
CA′ f A

t + CB′ f B
t + C′ ft

]
p
→ 0 (77)

Zi.t − B
′
iwDt −

[
CA′

i f A
it + CB′

i f B
t + Ci′ ft

]
p
→ 0 (78)

Z.jt − B
′
wjDt −

[
CA′

j f A
t + CB′

j f B
jt + C′

j ft

]
p
→ 0 (79)

and equations (24)–(27) change to

AA
i0 =

(
CA

i CA′
i

)−
CA

i (80)

AA
i1 = −

(
CA

i CA′
i

)−
CA

i

[
CB′

i

(
AB

0 + AB
1

)
+ C′

i A
]

(81)

AB
j0 =

(
CB

j CB′
j

)−
CB

j (82)

AB
j1 = −

(
CB

j CB′
j

)−
CB

j

[
CA′

j

(
AA

0 + AA
1

)
+ C′

j A
]

(83)

The derived matrices (A, AA
i0, AA

i1 AB
i0, AB

i1) for the different multi-factor error structures

are somewhat different from those derived in Section 3.1. However, the implied proxies are

unchanged.
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