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1 Introduction

Broadly speaking, post-stratification refers to any method of data analysis which involves

forming units into homogeneous groups after the sample has been taken (Holt and Smith,
1979, Smith 1991). Typically, however, the term is restricted to those cases where auxiliary
information external to the sample is available in addition. As such post-stratification is
a central concept in survey sampling. It induces a structure to the population according
to the auxiliary information, on which many of the standard methods are based including

post-stratified estimation, generalized regression estimation and calibration estimation.

We explain all these methods from such a synthetic point of view. All of them are more
or less a special case of calibration, and all of them are based on post-stratification. Indeed,
post-stratification is the finest calibration and calibration the relaxed post-stratification.
Throughout, we assume that the estimation aims at some population total, and that the
estimator is of the linear class.

In addition, the appendix describes a program package CALWGT for calibration writ-
ten in S-Plus for Unix.

2 Post-stratification and post-stratified estimation

We shall distinguish between post-stratification and post-stratified estimation. While the
former defines a structure of the population according to the auxiliary information, the
latter refers to a special way in which this structure is utilized for estimation purposes.

2.1 Post-stratification

Denote by y the object variable of the survey and by x the auxiliary variable, both may
possibly be vector-valued. Denote by U the population of the size N, i.e. U = 1, ..., N,
and by i the unit index. Post-stratification is carried out w.r.t. x after the sample has

been collected, which divides the population into, say, H disjoint (population) post-strata,
i.e. U = U i Uh where Uh fl Ug = Ø for h g. Meanwhile, applying post-stratification to

the sample, denoted by s, gives rise to sample post-strata (s 1, SH)-

The post-stratification introduces the structural transition from (s, U) to {(Si, U1), ----,

(sH , UH )}, which allows us to think of sh as a sample taken from the homogeneous sub-

population Uh-
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2.2 Post-stratified estimation

Post-stratification gives us Y = Eieu Yi=	 Yh = Eh(Eie uh yi). Given the knowledge

of the distribution of the population post-strata, denoted by ph = NhIN where Nh is the

size of the hth population post-strata, and that none of the sample post-strata is empty,

the post-stratified estimator for Y is of the form -i>"‘pst =7- Eh '1‘711, i.e. estimating Yh based

on sh and taking summation over s i, sH . Notice that ph, though implicit, is necessary

for constructing kh.

Estimator iTh differs according to whether the inclusion probability, denoted by 7r i , is

constant or not within each Uh. In case iri = 7íh for i E Sh, Yh is estimated by means

simple expansion, i.e.

"vpst 	 = ENhfh =	 =E(NhInh)E yi EWh yi,
h	 h	 h	 h	 iEsh	 h	 jEsh

where nh is the size of the hth sample post-stratum. We call this the simple post-

stratified estimator.

Under some complex design where iri differs within each post-stratum, an unbiased

estimator of Yh is given by the Horvitz-Thompson estimator within the post-stratum,

i.e. f7h = EiEsh yihri . However, the suggested estimator in such cases (Smith, 1991), the

so-called Hajek estimator, applies a ratio estimator within each Uh instead, i.e.

1>h — Nh(hi Nh) (NhYh)/(E 1/70 = Nh( yiPri)/(E 1/7).
, sh 	 i E sh 	 iE sh

The weight for i E sh is now Nh(lhri)/(EiEsh 1/7j). The reason is that -1"h/iSr- h is often

more efficient for the post-stratum mean than kh/Nh even when Nh is known (Särndal,

Swensson and Wretman, 1992, Section 5.7).

2.3 Discussion

The main theoretical problem of the post-stratified estimation is conditioning. Post-

stratification, according to Holt and Smith (1979), implies that the properties of an esti-

mator for Y should be evaluated conditional to the realized sample configuration of the

post-strata, i.e. (n i ,...,nH). This is particularly convincing in case of the simple post-

stratified estimator, which serves as the primary example of post-stratified estimation.

Difficulties arise, however, when dealing with complex designs, because { iri , i E sh} is

not fixed when conditioning on nh alone, and its distribution easily becomes untraceable

(Rao, 1985).
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Consider, for instance, stratified simple random sampling where post-stratification cuts

across the stratification. Given categorical auxiliary variable, this is a common situation

where such difficulties arise. However, whenever ph indeed is based on some population

register, it is in principle possible to combine this register with that from which the sample

was drawn. In other words, post-stratification can be extended to include stratum index as

an additional auxiliary variable, since the combined register would provide the necessary

Nh. For the general case, thus, the solution would be to include 7Ti as an additional

auxiliary variable, followed by post-stratification in the usual way.

The practical problem of this approach, as well as for the post-stratified estimator

at large, is the resulting empty sample post-strata. Another side of this problem is

that the totals of the population post-strata may not always be available/reliable. Post-

stratified estimation which ignores the empty sample post-strata is downward biased for

non-negative yi as noted by e.g. Jagers (1986). A few exceptions apart (Fuller, 1966),

calibration estimation (Deville and Särndal, 1992; Deville, Särndal, and Sautory, 1993)

provides an alternative general methodology.

3 Post-stratification and calibration (I)

3.1 Calibrating post-stratification

The weights for the given sample, i.e. {w i ; i E s } , are said to be calibrated w.r.t. a

set of known totals in the population, if the estimates based on {wi ; i E sl reproduce

these totals. Given categorical auxiliary variable, such totals are typically the sizes of

the various domains of the population. Indeed, from the calibration point of view, the

post-stratified estimator should first of all be calibrated w.r.t. the sizes of the population

post-strata, i.e. Nh EiEsh wi for 1 < h < H, which is true for the simple post-stratified

estimator and the Hajek estimator, but not the Horvitz-Thompson estimator.

In particular, whenever the post-stratification has used up all the auxiliary information

available, it must also define the finest division of domains w.r.t. whose totals calibration

can be carried out. In other words, the set of calibration totals, denoted by T, can only

be taken from

((1, .--,H) = {t; t = EhER Nh og R C {1, ..., H}}.

Thus, if an estimator is calibrated w.r.t. (N1 , ..., NH ), it is necessarily so for any T C (.

Technically speaking, in case of empty sample post-strata, calibration avoids collapsing

post-strata provided each population total of the empty sample post-strata is built into
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more than one calibration totals. As a simplest case, assume non-empty sample post-

strata except from s l . Since none of the sample units comes from U1 , calibration w.r.t.

N1 is impossible, i.e. N1 T. To collapse U1 into some other post-strata means, (a) a

bipartition of T as (T1, T2), (b) a choice of some g E {2, ..., H} and let T1 = N1 + Ng , and

(c) letting T2 = {Niz ; h E {1, g}c}. On the other hand, one could also let N1 contribute

to more than one of the components of T C ((1, ..., H). For instance, let T = (T1, T2)
where T1 = (N1 + N2, N1 -F- N3) and T2 C ( (4 , ..., H). Since the calibrated weights satisfy

+ N2 = E jEs2 wi as well as N1 + N3 = EjE s3 Wi, both units from s2 and 83 will now

account for .5 1 , and no collapsing post-strata is needed. Moreover, in case (N2 , N3) are

built into T2 themselves, i.e. T2 C ((2, ...H), more post-strata will be involved - the

effect is sent down in a domino-motion.

Remark 1 Calibration is sometimes known as the generalized raking. It resembles the

method of raking in that both satisfy the known population marginal totals. Both avoid

collapsing post-strata in case of empty sample post-strata, though the raking may become

unstable or even fail to converge in such cases (OH and Scheuren, 1987). The difference

occurs at the domain level, i. e. while raking is able to produce estimate for a post-stratum

even if it is empty in the sample, this is never possible with calibration, or any linear

estimator of the form EiEs wiyi .

3.2 Dummy index: an example

Let post-stratification be based on auxiliary variable (a) Sex - (Men, Women) and de-

noted by x 1 = 0 or 1, (b) Civil Status I - (Married, Not-Married) and denoted by x2 = 0
or 1, and (c) Civil Status II - (With Children, Without Children) and denoted by x3 = 0
or 1. This gives rise to 8 post-strata, i.e. (x 1 , x2 , x3 ) = (i, j, k) for i, j, k = 0, 1, where e.g.

(0, 0, 1) stands for -̀`married men without children".

Dummy indexing of the post-strata for each sample unit consists of a vector of the

same number of components as the number of post-strata, i.e. 8 in this case. Each

component corresponds to a post-stratum, and takes value 1 if the unit belongs to this

post-stratum and 0 otherwise. In this way, the dummy index of the auxiliary variable

is zi = (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), ..., (0, 0, 0, 0, 0, 0, 0, 1), depending on which

post-stratum the unit belongs to. Notice that the sum of the components of any vector

is constant unity. In particular, using dummy indexing, calibration w.r.t. the post-strata

totals can now be expressed as the calibration equation, i.e.

T = wi zi 4:›. (N,, N„) = zh ( wi ) 4: Nh w.
iEs	 h	 iEsh	 iEsh
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Since the dummy indexing arises from crossing all the three auxiliary variables, it

is sometimes shorthanded as "Sex x Civil Status I x Civil Status II" (Bethlehem and

Wouter, 1987).
In general, dummy indexing for calibration w.r.t. T refers to the arrangement of

the binary vector for the sample units such that the calibration equation retains the form
T E iEs Wiz, It follows that such a dummy index would have the same number of

components as that of T. Consider the next two illustrations.

Let first T be the population marginal totals of (x 1 , x2 , x3 ), i.e. the total of (a) Men,

(b) Women, (c) Married, (d) Not-Married, (e) With Children and (f) Without Children

- six of them in all. Dummy indexing each xj , for j = 1, 2, 3, in the usual way gives us

sub-vectors, say, (0, 1) if x i = 0 and (1, 0) if x 1 = 1, (0, 1) if x2 = 0 and (1, 0) if x2 = 1,
and (0, 1) if x3 = 0 and (1, 0) if x3 = 1. Juxtapose the three sub-vectors leads to

(0, 1, 0,1,0,1) if (xi, x2, x3) = (0, 0 , 0),

(0, 1,1, 0, 0,1) if (xi, x2, x3) = (0, 1 , 0),

(1,0,0,1,0,1) if (xi, x2, x3) = (1,0,0),

(1,0,1,0,0,1) if (xi, x2, x3 ) = (1,1, 0),

(0,1,0,1,1,0) if (xi, x2, x3)

(0,1,1,0,1,0) if (xi, x2, x3)

(1,0,0,1,1,0) if (xi, x2, x3)

(1,0,1,0,1,0) if (xi, x2, x3)

Notice that the sum of the components of any vector no longer remains constant unity.

In addition, the way in which the calibration totals here arise from the auxiliary variable

will be referred to as natural, shorthanded as "Sex + Civil Status I + Civil Status II".

Let now the calibration be defined w.r.t. the following marginal population totals:

(a) Married Men, (b) Not-Married Men, (c) Married Women, (d) Not-Married Women,

(e) Men With Children, (f) Men Without Children, (g) Women With Children, and (h)

Women Without Children - eight of them in all. These can be shorthanded as "(Sex

X Civil Status I) + (Sex x Civil Status II)". Post-stratification according to (Sex, Civil

Status I) leads to sub-vector (1, 0, 0, 0) for (x i , x2) = (0, 0), (0, 1, 0, 0) for (x 1 , x2) = (0, 1),
(0, 0, 1, 0) for (x 1 , x2) = (1, 0), (0, 0, 0, 1) for (x 1 , x2 ) = (1, 1). Similarly, post-stratification

according to (Sex, Civil Status II) leads to sub-vector (1, 0, 0, 0) for (x l , x3) = (0, 0),
(0, 1, 0, 0) for (xi, x3) (0, 1), (0, 0, 1, 0) for (x i , x3) (1, 0), (0, 0, 0,1) for (x i , x3) 7- ---

( 1 1). Care needs to be taken so that the juxtaposition of the two sub-vectors is carried

out consistantly, i.e.

(1, 0 0, 0,1,0,0,0) if (xi, x2, x3) = (0, 0, 0) (0, 1, 0, 0, 1, 0, 0, 0) if (xi, x2, x3) = (0,1,0)

(0,0 1,0,0,0,1,0) if (xi, x2, x3) = (1,0,0) (0,0,0,1,0,0,1,0) if (xi, x2, x3) = (1,1,0)

(1,0 0,0,0,1,0,0) if (xi, x2, x3) = (0,0,1) (0,1,0,0,0,1,0,0) if (x i , x2 , x3 ) = (0,1,1)

(0, 0 1, 0, 0,0, 0,1) if (xi, x2, x3) = (1,0,1) (0, 0, 0,1,0, 0, 0,1) if (x i , x2 , x3 ) = (1, 1, 1).
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Finally, since the dummy indexing amounts to some one-to-one transformation of

the auxiliary variable, we shall not make an effort to distinguish the two forms from

now on. That is, we simply write x i as the auxiliary vector of the ith unit, and X the

corresponding totals in the population, in which way the calibration equation becomes

now X 
-7--- EiEs WiXi. It also becomes clear that the calibration breaks down only if there

are all zero-element columns in the sample auxiliary matrix, whose ith row is given by xi .

4 Calibration and generalized regression estimation

4.1 Linear calibration and generalized regression

The calibration equation alone, i.e. the choice of the calibration totals, is insufficient in

determining the weights. Two more things are used: (a) a set of initial weights, denoted by

fai ; i E sl, e.g. weights from the simple post-stratified estimator or the Horvitz-Thompson

estimator, and (b) a metric function, denoted by G, which measures the distance between

{ ai ; i E sl and the calibrated weights Iw i ; i E sl. Deville, Särndal, and Sautory (1993)
chose r i = w i /ai as argument of G, and the measure of distance for the whole sample as

EiEs aiG(ri). The idea is now to find { w i } which differs least from fa i l while subject to

the calibration equation.

Let g = OG/ar be its first partial derivative. Let A = (A i , ..., AJ) T be the Lagrange

multiplier, we solve for {wi ; i E s} ,

afE aiG(ri ) — (E wix i — X)\}/5wi = g(ri ) — x i A = O.
iEs	 iEs

Denote by h(u) = g-1 (u), i.e. the inverse functionof g. The calibrated weights

are then formally wi = ai h(x i A) where A satisfies the calibration equation, i.e. X =
EiEs ai h(xi A)xi . Special attention has been paid to the so-called linear method where

G = (r — 1) 2 /2, which gives g =r — 1, and h(u) = 1 + u, and the calibrated weights

wi = ai (1 + x i A) = a i ll + (X — E ax)(E ai xT x i ) l xr} .
iEs	 iEs

This is identical to generalized regression (GREG) estimation with fai , i E sl as

weights (Bethlehem and Wouter, 1987; Lemaitre and Dufour, 1987). Though the GREG

estimation was historically strongly motivated by empty post-strata, it does offer an

alternative interpretation to the resulting estimator. For any finite population vector

y ---= (Yi, ---, YN) T with auxiliary vector xi for the ith unit, we make the transformation

from y to e = (Ei, --, EN) T , i.e. Ei = yi —x i)(3, through the vector 0 of the same dimension as
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the auxiliary vector. In particular, the ordinary least-square fit based on the population

is defined as [3 = (xT x)' xT y where x is the auxiliary matrix whose ith row is set to x i .

Notice that the GREG estimator can thus be regarded as a linear adjustment of the

initial estimator based on {a; i E sl (Särndal, Svensson, and Wretman, 1992, Chapter

6-7), after which the weights necessarily satisfy the calibration equation E iEs wixi = X.
The GREG estimation provides thus an alternative mathematical formulation of the

calibration estimation. That is, in case the transformation y i — x ß is made w.r.t. the

calibration totals X, the resulting weights will be calibrated. This is managable via
suitable dummy indexing. On the other hand, the final weights depends now on how

the parameter f3 is defined, instead of the distance function G — though the two can

be made identical in "the linear case". As an extreme case, post-stratified estimation

can be obtained by setting the dummy index to be the post-stratum indicator (Särndal,

Swensson, and Wretman, 1992, Section 7.6). Post-stratified estimation can therefore be

regarded as the "full regression model" which has included all the interaction among the

auxiliary variables.

4.2 Variations of calibration estimation

Deville and Särndal (1992) considered in fact a class of distance functions. In an even more

general form, individual coefficients 1/q i can be attached to G to form a weighted overall

distance of the sample, i.e. the weighted calibration, though applications are dominated

by the standard case of q i = 1. In any case, it was shown (Deville and Särndal, 1992)

that the linear method provides asymptotically the common linear approximation to all
the calibration estimators in this class. It is at the same time the fastest since it does

not require iterative fitting. It has also been noted that the calibrated estimate kc,„/ often

differs rather little from one method to another.

When the sample is small, the linear method might produce negative weights from

time to time. Should this be found undesirable, iterative alogrithms can be developed

to restrict the range of the weights. See e.g. Jayasuriya and Valliant (1996) for an

application of this type of restricted regression estimation. Basically, one decides on the

lower and upper limits of the calibrated weights — weight ratio wi/ai exceeding 3 or 4

are considered large. After each iteration, the weights which fall outside of these limits

will be truncated, and the fitting algorithm are re-runned for the remaining sample, with

corresponding adjustment of the calibration equaiton. It is to be noticed that too strong

restrictions may cause the algorithm not to converge. We also note that the extent and

consequences of adjusting negative weights through weighted calibration has not been
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much studied.

Inspection of the GREG estimator shows that the sign of the linearly calibrated weights

depends largely on the inverse of the matrix E iEs aixTx j . The so-called ridge regression

(Chambers, 1996) adds to this a user-specified positive diagonal matrix D of the same

dimensions, i.e. substituting (D -1 + E iEs aix,Tx j ) -1 for (Eies aixTxj )' in the formula

for the linearly calibrated weights. It turns out the ridged weights can be obtained from

minimizing the ridged loss function

1	 1
-2 E	 - 1) 2 + -2 (X - E wixi)D(X - E WiXi)T ,

iEs	 iEs	 iEs

whose second term can properly be regarded as a penalty to be paid for deviation from

the population totals contained in X. For this reason the method can be classified as

penalized calibration, which does not satisfy the calibration equation unless D diag(oo).

In particular, negative weights can almost always be eliminated if one is willing "to pay

a large enough penalty".

5 Post-stratification and calibration (II)

5.1 A synthesis: Post-stratification is the finest calibration, and cal-

ibration the relaxed post-stratification

By gradually relaxing the calibration equation from post-stratified estimation to GREG
estimation and finally to the weighted and penalized calibration, calibration estimation

inceases the applicability of the population structure defined by the post-stratification.
The question which remains is whether, or to which degree, this gain is accompanied by the

preservation of a number of properties derived from the primary case of the simple post-

stratified estimator. We shall concentrate here on the linear calibration estimator. In the
light of the synthesis here, our approach is different from the standard one with a Horvitz-

Thompson-start. The results in such cases can e.g. be found in Särndal, Swensson, and

Wretman (1992). Throughout, we assume that the calibration totals are selected from
((1, H) where h = 1, ..., H is the post-stratum index.

5.2 The properties of the calibration estimator without empty sample

post-strata

Suppose first that the sample post-strata are all non-empty, i.e. nh > 0 for 1 < h < H.
The linear calibration estimator can, in virtue of the transformation y i = xß ei , be
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rewritten as an adjustment of the simple post-stratified estimator 	 7 i-e-

Ycai	 kpst E vi(xio +	 vi = wi — qh = wi — Nh Inh for i E sh
iEs

ifp,t + E viEi	 E wixi = E qhnhxh = X.
iEs	 iEs	 h

If (a) ir = rh for i E sh, where 7ri is the inclusion probability of the ith unit and

its inclusion probability conditional to n = (n 1 ,...,nH), and (b) wi = 'Wh for i E Utz,

then the conditional bias of f7cai simplifies to Ma/ --- Yin] = Eh E{VhEiEsh 011 =

Eh nhvh (E i 	= Eh nhvhEh, such that it is conditionally, and therefore uncon-

ditionally as well, unbiased regardless of the initial weights apart from condition (b),

provided that, V 1 < h < H,

Nh

(1)	 E fi = O.
i=1

Notice that condition (b) can be generalized to (1)) 7 {wi , i E sh} remains constant

conditional to n, which however makes little difference in practice. In the transformation

which results into the calibration estimator, is such that EiE u e is minimized for the

given population. It follows that EiE u CCiEi = 0, i.e. the residuals sum up to zero for each

marginal, which is necessary yet not sufficient for (1), since the latter requires that the

residuals sum up to zero within each population post-stratum. If we have (i) stratified

srswr conditional to n, and (ii) wi = 'Wh for i E Uh, then

iEuh
Var(1"ca/ In) =	 nh(1 fh )E — 4,01	 fh = —	 = E

Nh 	Y
( 1---, Y7h) 2 

N —1h

A key condition above is that w i Wh for i E Uh, which is satisfied whenever ai = ah
for i E sh . This follows since {wi } minimizes, subject to the calibration equation,

jEesh /Di ahnh)-
h	 Esh

>ah 	— 1) 2 = E(ah-1 jEEsh wi2 —iL—dY ah	 h

Since the calibration equation, i.e. Eh Xh(Ei Esh 	= X, will not be disturbed by the

particular choice of {wi ; i E sh} as long as Wh = EjE sh wi remains the same, for arbitrary

fixed Wh, the distance is minimized at w i = Wh/nh. In other words, wi = Wh for i E 8h•
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5.3 The properties of the calibration estimator with empty sample

post-strata

Let Ro U R = {1, ..., H}, where R o n 1:16 = ø and nh = 0 for h E Ro and nh > 0 for

h E Rg, i.e.

kcal = E qh(E yi)+Eviyi
heft; 	iEsh	 iEs

qh Nh Inh and vi wi — qh for i E Sh.

Let X0 EhER0 EjEuh xi , and E0 EhER0 EiEuh fi, and E 	E iEuh Ei for h E R.
Notice that E iEs w ixi = X and hER qhnhxh7	 = X — Xo . Under the same condition (a)A-d (s 

and (b) as before,

E[Ÿcai — Yin] = E (E vi)(E y2/Arh)— E E = E v,,Th — Yo
hEgs iEsh	 iEuh	 hER0 iEuh	 hEN,

E vhcxhp + E Vif4 —Yo = (X0ß + E vkE) — pc0,3+E0 ).
',ER; 	hEN,	 hEN,

In other words, kcal is unbiased regardless of the initial weights apart from (b), provided

(2)
	

E E Ei = 0	 and	 E Ei = 0 for h E R.
hER0 ieuh	 iEuh

It is worth noting here that, since (2) follows from (1), the unbiasedness of the cal-

ibrated estimator can, for such populations, be "immune" towards empty cells in the

sample, just like the method itself. Moreover, given (i) and (ii) as before, we have

Var(kcadn) = E nh (1— fh)qi cr?,	 fh —	
l'h)2= E •

hEN,	 iEuh	
hN —1

Since this conditional variance probably underestimates the uncertainty in the esti-

mation an ad hoc remedy consists in collapsing the empty and singular (where nh = 1)

post-strata into other non-empty post-srtata in some reasonable fashion, and use the

combined totals instead of Nh for nh > 1 alone. This we call the poorman's variance

estimator.
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A CALWGT: A program package for calibration

A.1 General information

The program package for calibration CALWGT is written in S-plus for Unix — "Version

3.2 Release 1 for Sun SPARC, SunOS 4.x : 1993". The installation diskette for CALWGT

is available on request to the author at

E-mail: Iczassb.no 	 Tel: -1- 47 22 00 44 78 Fax: -I- 47 22 86 47 34.

CALWGT can be freely distributed. To ensure version-consistency, however, OTHER

names ought to be used after any modifications by the users. It is kindly requested that

the author at the above address be contacted in case of any ambiguities or errors which

may arise for improvements and corrections.

A.2 Installation and on-line help

The CALWGT installation diskette comes with the following files: "calwgt.aux", "cal-

wgt.drv" , "calwgt.ini", "calwgt.src", "calwgt.txt", "readme.txt". A description of the

installation procedure can be found in "readme.txt".

CALWGT has its own on-line help which will automatically be invoked under the

installation. It contains information on how to set up the data for CALWGT, its calling

parameters, how to handle abnormal exit of CALWGT, as well as a few practical tips on

how to extend the standard theory of calibraiton to deal with some special cases. Once

installed, the on-line help can be invoked any time in S-plus environment by typing in the

command

> .calwgt.hip()

A.3 Calibrating the weights

The main part of CALWGT which deals with calibration is invoked in S-plus environment

by

> .calwgt(calling.parameters)

Please refer to the on-line help for how to set up the "calling.parameters". In partic-

ular, CALWGT handles both categorical and continuous auxiliary variables.
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Once started, CALWGT proceeds interactively where each promt will be coupled with

a number of helpful notes/comments. The built-in error detective mecahnism should

prove adequate in most cases provided the instructions are being followed. Basically, the

user is able to choose between the linear and the multiplicative methods, with all their

unrestricted, truncated or restricted options having been made available.

As a special note, one should avoid the logit (L,U) (Deville, Särndal, and Sautory,

1993) method whenever possible. On the other hand, the user is encouraged to run both

the linear and the multiplicative methods, and compare the resulting calibration estimates

— these should be fairly close to each other for "nice" samples.

On normal exit, the calibrated weights will be written into "wgt.cal" , and the Lagrange

multipliers into "lambda.cal" — both under the same directory as CALWGT.

A.4 An example

Suppose calibration is to be carried out towards (Unit index, Employment Status, Sex).

The first of them is a constant auxiliary variable for all the members of the population;

while the last of them is a binary variable. Suppose the employment status is divided into

the three categories, i.e. "Employed" , "Unemployed" , "Labour-InActive" . CALWGT

considers this calibration as having 3 auxiliary variables, with configuration vector (1,3,2).
The population is now cross-classified into 6 (--= 1 x 3 x 2) post-strata. Instead of

simply naming them as (1,1,1), (1,1,2), ..., (1,3,2), the dummy indexing for natural cali-

bration leads to the following model design matrix, which contains all the possible dummy

auxiliary vectors,

(1 1 o o 1 o \
1 1 0 0 0 1

1 0 1 0 1 0

1 0 1 0 0 1

1 0 0 1 1 0

1 0 0 1 0 1 i

To actually carry out the calibration, the user must supply the population marginal

counts — 6 of them here in this case, the sample design matrix, and the initial weights.

Suppose the population marginal counts are (60, 25, 15, 20, 25, 35), and that we have a

sample of size 4 with sample design matrix given as
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(1 1 o o i o\
1 0 1 0 0 1

1 0 0 1 0 1

110010/

and the initial weights are (15, 15, 15, 15). CALWGT returns (12.5, 20, 15, 12.5) as

the calibrated weights — the transcript is given below:

> Splus

S-PLUS : Copyright (c) 1988, 1993 Statistical Sciences, Inc.

S : Copyright AT&T.

Version 3.2 Release 1 for Sun SPARC, SunOS 4.x : 1993

Working data will be in /ssb/lynx/h1/lcz/.Data

> .calwgt(F,F,F)

Starting CALWGT...

Model specification — a vector which identifies the model.

For instance, calibration towards (sex,age,area) with, say,

four age groups and ten area codings implies 3 auxiliary

variables, with configuration vector (2,4,10).

The number of auxiliary variables (<number> <return>):

1: 3

The configuration vector (<number> <space> ... <number> <return>):

1: 1 3 2

The defined model has 3 auxiliary variables, each

with 1 3 2 levels, giving in total 6 marginal

counts w.r.t. which the calibration is to be carried out.

The size of the sample (<number> <return>): 1: 4

Typing in the population marginal counts on-line ( 6 of them )...

1: 60 25 15 20 25 35

Typing in the initial weights of the sample units on-line ( 4 of them )...

1: 15 15 15 15
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Typing in the sample design matrix on-line ( 4 * 6 )...

No. 1 , 1: 1 1 0 0 1 0

No. 2 , 1: 1 0 1 0 0 1

No. 3 , 1: 1 0 0 1 0 1

No. 4 , 1: 1 1 0 0 1 0

The method of calibration:

press <1> and <return> for the iterative linear method;

press <r> and <return> for the NON-iterative linear method;

press <m> and <return> for the multiplicative method

— using IPS and for dummy indexing only;

press <n> and <return> for its quicker, all-round version

— using Newton-Raphson method;

press <g> and <return> for the logit (L,U) method

— a restricted multiplicative method.

1: r

With bounded weights or not (<y>/<n> <return>)?

1: n

Calibrating the weights... (See `calwgt.log' for more information.)

CALWGT has successfully converged.

The calibrated weights have been stored under the name `wgt.car,

and the parameters of the model under clambda.cal'.

Exit CALWGT... Bye!

> scan("wgt.cal"

[1] 12.5 15.0 20.0 12.5

> scan(" lambda.cal")

[1] 0.3333333 -0.5000000 -0.3333333 0.0000000 0.0000000 0.0000000

> q()
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