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1. Introduction 
The Clean Development Mechanism (CDM) has been introduced into the Kyoto Protocol for two main 

purposes. For the so-called Annex B countries, the purpose has been to reduce the overall costs of 

implementing their target for greenhouse gas (GHG) emissions.1 This is accomplished by shifting 

some mitigation costs from high-cost Annex B countries to low-cost Non-Annex B countries. For the 

Non-Annex B countries, the purpose has been to secure sustainable development through financing of 

projects and programs that simultaneously reduce their GHG emissions and support development, 

particularly in the energy sector. 

 

It is important to emphasize that the CDM is an offset mechanism, and does not intend to reduce 

global GHG emissions. Rather, when a party in an Annex B country pays a party in a Non-Annex B 

country to reduce its emissions, the Annex B party is credited for this emissions reduction. In other 

words, for every GHG emissions reduction achieved through a CDM project in Non-Annex B, the 

total cap on GHG emissions within Annex B is lifted accordingly.2 

 

In this paper we argue that using the CDM will typically tend to increase global emissions. Several 

problematic issues have been discussed in relation to the CDM, such as defining the appropriate 

baseline (would the project have taken place anyway?), avoiding perverse incentives to inflate 

emissions (to achieve/sell more credits), and providing disincentives to introduce environmental 

policies in Non-Annex B countries. These problems have been widely discussed in previous literature, 

including Bohm (1994), Hagem (1996), Wirl et al (1998), Fischer (2005), Wara (2008), and 

Rosendahl and Strand (2009). This literature concludes that there is a significant risk of overestimating 

the emission reductions from several types of CDM projects; thus global GHG emissions increase as a 

consequence of these projects. 

 

Our focus here is on a separate but related issue, namely (carbon) leakage, which has been less studied 

in relation to the CDM. When a CDM project reduces the consumption of fossil fuels in a Non-Annex 

B country, fossil fuel markets will be affected. As a consequence, fossil fuel consumption elsewhere in 

Non-Annex B may change. Such spillover effects are often referred to as (carbon) leakage. Although 

                                                      
1 Annex B countries are higher-income countries with binding commitments for GHG emissions under the protocol. Non-
Annex B countries are middle- and lower-income countries without such binding commitments. 
2 It could be argued that the overall commitment in the Kyoto Protocol would have been less stringent without the CDM, in 
which case the existence of this mechanism has contributed to reduced global emissions. In our paper we focus on the use of 
the CDM. 
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CDM projects are required to account for leakage, (indirect) market leakages are generally neglected 

(cf. Vöhringer et al., 2006).3 

 

The story above is only half-way told, however. A CDM project increases the effective cap on 

emissions within Annex B. Thus, consumers in Annex B will typically consume more fossil fuels than 

without the CDM project. This will also affect fossil fuel markets, and may lead to higher prices of 

fossil fuels and thus, possibly, negative spillover effects in Non-Annex B. Any net leakage must occur 

in Non-Annex B, because total emissions in Annex B are given by the (increased) cap. The effect on 

global GHG emissions of a CDM project (or the sum of all CDM projects) depends on the sum of the 

two types of leakage in Non-Annex B.  

 

Our paper studies analytically how leakage from CDM projects depends on different characteristics of 

the fossil fuel markets. We provide numerical examples to illustrate the possible size of carbon 

leakage. The analysis shows that the overall leakage effects depend highly on the global character of 

fossil fuel markets. If these markets are “close” to being globally unified with one single price per 

fuel, leakage tends to be small and of less concern. If (some) fossil fuel markets are more segregated, 

so that domestic consumers to some degree favour domestic over imported fuels (e.g., due to high 

transport costs), leakage will in most cases be positive and sometimes significant. We show that the 

size of leakage depends highly on demand and supply responsiveness, especially in Non-Annex B, but 

also on supply responsiveness in Annex B. In some cases, leakage could be negative. Still, we find 

that CDM projects in the energy sector most likely lead to significant and positive leakage, and thus to 

increased global GHG emissions. 

 

This paper models leakage effects in fossil fuel markets only, and not in product markets. Note, 

however, that leakage may occur also through product markets, notably for energy-intensive products. 

A CDM project that reduces production of an energy-intensive product will likely raise the output 

price in that sector, inducing other firms to increase their outputs, and thus emissions. These other 

firms could be domestic firms (in the country where the CDM project is carried out), firms in Non-

Annex B more generally, or even firms in Annex B (depending in particular on the degree of 

international competition). 

 

The traditional understanding of leakage is related to the effects of unilateral environmental policy, 

and there exists a substantial literature on this issue, including both theoretical and empirical studies. 

                                                      
3 Direct leakage effects, e.g., increased emissions associated with constructing a wind mill, are sometimes accounted for. 
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Considering first analytical work, Copeland and Taylor (2005) analyze leakage effects through trade in 

“dirty” goods, and distinguish between substitution and income effects from price changes on the 

world market.4 Hoel (1996) considers differentiated carbon taxes versus other trade measures to 

counteract leakage. Effects of technological spillovers are examined by Golombek and Hoel (2004), 

Gerlagh and Kuik (2007) and Di Mario and van der Werf (2008). Babiker (2001) investigates how 

restrictions on capital mobility may affect leakage, whereas Eichner and Pethig (2009) look into 

dynamic behaviour by non-renewable resource owners. We however take this literature several steps 

further in new directions, by explicitly separating between regional fuel markets, and between (two) 

types of fossil fuels. In particular, in the “standard” model, with only one fuel and one global fuel 

market with a unified fuel price, we show that there is no leakage. For that reason, this “standard” 

model is not useful for studying the leakage issue. Our extended model, with some fuels not being 

fully global, then enables us to identify a variety of sources of (positive or negative) leakage.  

 

Existing empirical studies have largely focused on leakage resulting from climate policies being 

pursued in OECD (or Annex B) countries but not in other (Non-Annex B) countries (cf., e.g. Babiker 

(2005), Demailly and Quirion (2006, 2008), Grubb and Neuhoff (2006), Houser et al (2008), Reinaud 

(2005)).5 The assessed size of carbon leakage from unilateral climate policies varies substantially 

between studies. It is interesting to note that leakage from unilateral OECD policies will typically be 

highest if fossil fuel markets are global in character, because demand outside OECD is then more 

affected by demand reductions within OECD. As noted above, we show that leakage from CDM 

projects is highest if fossil fuel markets are more segregated. The reason for this disparity is that with 

unilateral OECD policy abatement activity and net leakage take place in different regions (OECD and 

Non-OECD, respectively), whereas with CDM projects both abatement activity and net leakage must 

take place in the same region (i.e., Non-Annex B where there is no cap on emissions). 

 

Only a small number of empirical studies on leakage related to CDM, or offset mechanisms in general, 

currently exist. A study by Böhringer et al (2003), of CDM projects in the electricity sector in India, 

                                                      
4 They also consider leakage through effects on other countries’ environmental policies; this has been studied also e.g. by 
Hoel (1991). 
5 There is also a complementary literature on economic policy measures for reducing the problem of leakage, in particular the 
use of free allowances, border taxes or other trade-related instruments; see Ismer and Neuhoff (2004), Fischer and Fox 
(2009), Pauwelyn (2007). 
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indicates a rate of leakage of 50-60%, due to market repercussions in the rest of the economy.6 The 

study does not consider the possibility of negative leakage effects from increased cap in Annex B, 

however. Bollen et al. (1999) and Kallbekken (2007) use global CGE models to analyze leakage from 

CDM, taking into account the effects of increased cap in Annex B. Bollen et al. find positive leakage 

effects caused by lower energy prices in Non-Annex B, while Kallbekken finds negative leakage 

effects. He finds negative leakage even when he only considers the emission reduction in the CDM 

host country, and not increased cap in Annex B and payment for the CDM credits. This result is driven 

by reduced output in the CDM host country, following higher prices of other goods than fossil fuels 

(e.g., electricity). None of these papers provides an analytical study of leakage from CDM projects.  

 

Our discussion relates to the CDM, but our findings are relevant to offset mechanisms in general. Any 

project that reduces emissions through reduced use of fossil fuels will have an impact on fossil fuel 

consumption elsewhere. The exception is if the project reduces emissions from a (presumably 

unregulated) sector that is part of a national emissions cap. 

 

In the next section we consider the case of one fossil fuel only, where domestically produced and 

imported fuels are imperfect substitutes. We look into different assumption about substitutability and 

trade between Annex B and Non-Annex B. A CDM project is here assumed to simply reduce 

consumption of fossil fuels in a Non-Annex B firm. Section 3 considers two different fossil fuels, with 

different characteristics with respect to global trade. Finally, in Section 4 we conclude. 

2. Carbon leakage from international trade in fossil fuels7 
Fossil fuels are traded in international markets, but fuel markets are not fully global with one single 

price for all consumers of the world (even when accounting for tax differences). For instance, import 

prices of coal differ significantly across countries (IEA, 2008), and most trade in coal occurs between 

countries in the same region.8 This is partly due to relatively high transport costs for coal,9 and partly 

                                                      
6 A related study by Glomsrød and Taoyuan (2007) finds that investing in coal cleaning in China, which has a negative direct 
effect on carbon emissions, could lead to increased overall carbon emissions in China due to substantial rebound effects from 
efficiency gains in the power and transport sectors. Although coal cleaning is not a specific CDM project, it shows that 
reducing emissions through efficiency investments may have adverse rebound effects if not controlled by the CDM Executive 
Board. 
7 As our focus here is on leakage, we disregard the so-called additionality problem. That is, we assume that the emissions 
reductions from the CDM project would not have taken place without the CDM. 
8 International coal trade accounted for 16 percent of global coal consumption in 2007, and a majority of international trade 
takes place within Annex B or Non-Annex B (IEA, 2008; EIA, 2009). 
9 For instance, according to calculations presented in CERC (2006), ocean freight rates from Australia to India accounted for 
about 30 per cent of total import costs in the period 1999-2005, with an increasing trend. Over the last couple of years, freight 
rates have been very volatile due to the escalation and then plunge in energy prices. 
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due to different coal qualities. A small shock to the market will typically have strongest effects on 

prices and demand/supply close to the source of the shock. For instance, a CDM project that reduces 

consumption of coal from an installation in India will most likely have stronger effects on coal supply 

and demand in India than in Germany. The oil market can in contrast be characterized as being close 

to global, whereas gas markets are mostly regional due to significant transport costs, and relation-

specific investments.10 

 

International trade of a particular commodity (or class of commodities) is typically modelled by 

assuming that commodities from different regions are imperfect substitutes. For instance, domestically 

produced commodities are considered as imperfect substitutes with imported commodities, and 

commodities imported from different countries/regions are considered as imperfect substitutes for 

each other. This assumption is e.g. used (also for fossil fuels) in most global CGE models based on the 

GTAP database.11 The respective substitution elasticities are often referred to as Armington elasticities 

(Armington, 1969). 

 

We consider trade in fossil fuels between Annex B and Non-Annex B. In this section we consider only 

one (aggregate) fuel. In Section 3 we will analyze the effects of having more than one fuel (within a 

simpler model). We assume that fuels produced in Annex B and Non-Annex B are imperfect 

substitutes. Besides quality differences, this assumption can be motivated by considering trade 

between Annex B and Non-Annex B as an aggregate of bilateral trade between countries or regions 

throughout the world. If we consider coal, and a price reduction in South African coal export, some 

countries (in Annex B and Non-Annex B) may want to increase their coal import from South Africa. 

Other countries do not import coal from South Africa at all because of too high transport costs, and 

will therefore remain unaffected by the price reduction. Consequently, on an aggregate level, coal 

produced in Non-Annex B is an imperfect substitute for coal produced in Annex B, both for 

consumers in Annex B and for consumers in Non-Annex B. The size of the substitution elasticity as 

well as initial trade flows determine the degree of globalization of the fossil fuel market.  

 

We consider a marginal CDM project that reduces the use of fossil fuels in a specific firm in Non-

Annex B (B) by cdmB units of carbon, and simultaneously increases the cap on Annex B (A) emissions 

                                                      
10 Some interregional trade takes place also in the gas market, and this long-distance trade is expected to grow in the future 
(see e.g. Aune et al., 2009). 
11 The GTAP database (https://www.gtap.agecon.purdue.edu/default.asp) contains complete bilateral trade information. The 
GTAP CGE model is documented in Hertel (1997). Examples of energy- and climate-related analysis using the GTAP CGE 
model or other CGE models using the GTAP database are Hertel et al. (2009), Fischer and Fox (2009), Banse et al. (2008), 
Babiker (2005) and Böhringer and Lange (2005). 
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by cdmB units. Our purpose is to examine the effects on global emissions, through changes in the fossil 

fuel market. We measure fossil fuel use in carbon units. Assume that Annex B countries as a group 

abide by the Kyoto Protocol so that their aggregate GHG emissions are exactly as required by the 

agreement, adjusted for possible offsets. We also assume that the cap on emissions in Annex B is 

implemented through a uniform price of carbon (τA). Market equilibrium before the CDM project is 

carried out is then given by equations (1) – (5) below.  

 

(1) ,
,

,i i j i
j A B

E C cdm i A B


    

 

Equation (1) states that emissions in region i, Ei, equal the sum of consumption (Ci,j) in region i of 

fossil fuels produced in each of the two regions A and B, plus the emissions from the CDM project to 

be implemented (which is not included in Ci,j). Obviously, cdmA = 0. Due do the binding cap on 

emissions in Annex B, we have A AE E .  
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Equation (2) is the requirement that total consumption of fuels produced in region i, also including a 

share αi of the CDM project consumption, must equal supply in region i (Si). Supply is an increasing 

function of its price (Pi), γi being the supply elasticity. Note that superscript 0 denotes baseline levels 

of the endogenous variables.  

 

(3) 
0 0

0
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Equation (3) states that consumption in region i of fuels produced in region j increases with total 

consumption in region i (TCi), and falls with the relative consumer price of fuels produced in region j 

(Pj + τi), compared to the regional consumer price in region i (PRi). The (Armington) substitution 

elasticity σi between fuels produced in Annex B and Non-Annex B influences on the effects of relative 

price changes. Note that the carbon tax is part of the consumer price of fossil fuels in region A, but is 

zero in region B (i.e., τB = 0).  
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(4) 
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Equation (4) expresses the regional consumer price as a CES aggregate of the consumer prices of fuels 

produced in the two regions. θi denotes the initial market value shares of the domestically-produced 

fuel.  
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Finally, equation (5) is the demand function, where total consumption is a decreasing function of the 

regional consumer price, with δi being the demand elasticity. 

 

Except for the inclusion of CDM and emissions, the model above is a standard trade model. We see 

that there are 12 equations and 12 endogenous variables (EB, Ci,j, TCi, Pi, PRi, τA). 

 

We will now examine the effects of removing cdmB from the market and at the same time increasing 

the cap AE  by cdmB units. To simplify, let cdmB = 1. Furthermore, we normalize all initial prices to 1, 

and total consumption in Annex B to 1 (thus, TCB denotes total consumption in Non-Annex B relative 

to total consumption in Annex B). To simplify, we also assume that σA = σB = σ, which means that the 

rate of substitution between domestic and imported fuels is assumed to be identical in the two regions. 

Finally, we assume that θd ≥ ½ and αB ≥ ½, i.e., import shares do not exceed 50%.12 

 

Our main interest is in carbon leakage (L), i.e., how much fossil fuel consumption increases elsewhere, 

per unit reduction through the CDM project. The leakage rate is simply L=ΣsdSs, which again depends 

on how the two prices Ps change. We take the total differential of the equation system (1) – (5), and 

after some tedious calculations arrive at the following expression for the price effects:13 

 

                                                      
12 This is consistent with overall net trade between Annex B and Non-Annex B for both oil, coal and natural gas. 

13 In the appendix we show the expression for Δ, which can be shown to be non-negative, and strictly positive except in very 
special cases. 



10 

(6)   1 1 (1 ) ( )A A B B A B B B BdP TC           


 

(7)    1 1 (1 ) ( )B A B A A B B A BdP TC            


 

 

As long as θA > ½ or αB > ½, from equations (6) and (7), the effects of the CDM project are to strictly 

increase the price of fossil fuels produced in Annex B, and strictly reduce the price of fossil fuels 

produced in Non-Annex B. It follows that fossil fuels output in Annex B increases, whereas output in 

Non-Annex B falls. The explanation is that consumption in Annex B increases when the cap is lifted, 

and demand for fuels produced in Annex B increases more than demand for fuels produced in Non-

Annex B (and vice versa for the reduced consumption in Non-Annex B outside the CDM project). 

 

The effects on carbon leakage can then be calculated as follows: 

 

(8)       
        

0 0

1 1 1 1

A A A B B B

B B A B A B B A B A B B B B A B
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 
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  

           

 

 

The sign of this expression is in general ambiguous, and depends on the sign of the last (square) 

parenthesis. The other factors are jointly positive. The sign of the square parenthesis depends in 

particular on the relationship between the supply elasticities in Annex B and Non-Annex B. If the 

supply elasticity in Annex B is at least as high as that in Non-Annex B (γA ≥ γB), L is non-negative and 

strictly positive unless γA = γB and θd = ½, or θA = αB = ½. On the other hand, if γB is high compared to 

γA, and θd are not too close to one, leakage may in fact be negative. We state these findings in the 

following proposition. 

 

Proposition 1: 

In a fossil fuel market with imperfect substitution between fuels produced in Annex B and Non-Annex 

B, a CDM project will lead to non-negative carbon leakage if the supply elasticity in Annex B (γA) is at 

least as high as that in Non-Annex B (γB). Leakage is strictly positive if also import shares are less 

than one half (θA > ½ or θB, αB > ½). Carbon leakage can be strictly negative if γA < γB and import 

shares are sufficiently large. 

 

It is of interest to consider a few special cases. First, consider the case where θd = αB =1, i.e., there is 

no trade in fossil fuels between Annex B and Non-Annex B. Note that there cannot be any (negative) 
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leakage from Annex B in this case, simply because any net leakage must take place in Non-Annex B, 

and leakage from Annex B to Non-Annex B is not possible when the fossil fuel markets are separated. 

As shown in the Appendix, the leakage rate then reduces to the following simple expression: 

 

(9) B

B B

L 
 





 

 

In this case carbon leakage is strictly positive and depends only on the relationship between the 

demand and supply elasticities in Non-Annex B. For instance, if the two elasticities have the same 

absolute values, the leakage rate is ½. Put otherwise, the net emission reduction is then exactly half the 

gross reduction from the project. If demand is more (less) elastic than supply, the leakage rate is 

higher (lower) than ½. Further, if the demand elasticity is close to zero while the supply elasticity is 

larger, leakage is insignificant. This could be the case if prices are regulated and the producers meet 

the demand of the consumers. On the other hand, if the supply elasticity is close to zero, the leakage 

rate is close to 100%, and so there is no net emission reduction resulting from the CDM project. This 

could be the case if production is regulated by the government.  

 

Intuitively, the CDM project reduces local demand for the fossil fuel. In order to restore market 

equilibrium, either supply must decrease, demand from other users must increase, or (most likely) a 

combination of the two. With price-responsive supply and demand, the final outcome will be a 

combination with reduced supply, increased demand from other users, and lower price, entailing a 

positive carbon leakage. 

 

Next, consider θA = αB = ½, i.e., Annex B consumers import the same quantity as they buy from their 

domestic producers, and the same applies to the CDM firm. Then it follows straightforwardly from (8) 

that carbon leakage is exactly zero. The first-order effects of reduced consumption in Non-Annex B 

(i.e., from the CDM project) is in this special case exactly counteracted by increased consumption in 

Annex B (i.e., from lifting the cap on emissions). Thus, market equilibrium is maintained with no 

changes in prices, supply in the two regions or demand in Non-Annex B (outside the CDM project). 

Consequently, there is no net leakage of the CDM project. 

 

If the substitution elasticity tends to infinity (σ→∞), it is easily seen that Δ→∞, so that L→0 (cf. the 

Appendix). This is the case with a single unified fuels market for Annex B and Non-Annex B, with a 

single global fuel price. This case also implies zero carbon leakage. The explanation is similar to the 



12 

above situation. From equations (6) and (7) we see that the fuel price must remain unchanged, which 

again follows because reduced consumption by the CDM project exactly matches the increased 

consumption in Annex B. 

 

Although the special cases discussed above are not in themselves very realistic, they are useful as 

benchmark cases. Thus, we sum them up in the following corollary: 

 

Corollary 1: 

a) If fossil fuels in Annex B and Non-Annex B are perfect substitutes in consumption (σ→∞) or 

the import shares equal 50% (θA = αB = ½), then there is no carbon leakage from a CDM pro-

ject.  

b) If there is no trade in fossil fuels between Annex B and Non-Annex B (θd = 1), then the carbon 

leakage rate only depends on elasticities in Non-Annex B, and equals 

 –δB/(γB−δB) > 0. 

 

Econometric studies of price elasticities vary a lot, and it is difficult to conclude unambiguously 

whether demand or supply elasticities are greater in absolute values. The same ambiguity applies to 

elasticities in Annex B vs. Non-Annex B. In the special case of θd = 1, we see straightforwardly from 

(9) that the leakage rate increases with the (absolute value of the) demand elasticity, and decreases 

with the supply elasticity (in Non-Annex B). In the general case, we first note that the demand 

elasticity in Annex B does not affect leakage at all (δA does not enter into (8)). The reason is that total 

emissions in Annex B are exogenously determined by the cap, and so δA only affects the size of τA, i.e., 

the tax needed to comply with the emissions cap.  

 

In the Appendix we show how the leakage rate varies with the other elasticities. First, we find that the 

absolute value of the leakage rate increases strictly in the absolute value of the demand elasticity in 

Non-Annex B, i.e., d|L|/d|δB| > 0 (except when L = 0 initially). Second, we find that dL/dγB < 0 and 

dL/dγA > 0 (except when θA = αB = ½), i.e., carbon leakage decreases with the supply elasticity in Non-

Annex B, but increases with the supply elasticity in Annex B. The explanation for the latter result is 

that a high supply elasticity in Annex B tends to reduce the negative leakage from less mitigation in 

Annex B. Third, if we multiply all supply and demand elasticities by the same factor k > 1, then the 

absolute value of the leakage rate increases (except in the special cases referred to in Corollary 1). In 

order to explain this, we have to consider the effects of changing the substitution elasticity, σ.  
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As stated in Corollary 1, there is no leakage in the limit when σ goes to infinity. It is also 

straightforward to show that the absolute value of the leakage rate is strictly decreasing in σ, cf. the 

Appendix (note that σ appears only in Δ in equation 8). A low σ means that a CDM project, mainly 

reducing consumption of fuel produced in Non-Annex B (assuming αB > ½), tends to reduce the price 

of fuel produced there relative to fuel produced in Annex B. Still, consumers in Annex B will not 

switch significantly towards fuel produced in Non-Annex B, e.g., because of transport costs. Thus, 

other consumers in Non-Annex B will tend to increase their consumption of domestically produced 

fuel, resulting in carbon leakage. If all supply, demand and substitution elasticities are multiplied by 

the same factor k, leakage is unchanged. The intuition is that when both producers and consumers 

become more price-responsive, also with respect to relative prices, the leakage rate is drawn in 

opposite directions, and the net effect is status quo. It follows from this that increasing only the 

demand and supply elasticities is equivalent to decreasing the substitution elasticities, which we have 

seen increases the absolute value of L. 

 

The effects of changing the market shares θd are less straightforward, as θd occurs also in the 

numerator of equation (8). However, if we assume that θd = αB = θ and that γs = γ (which implies that 

leakage is strictly positive for θ > ½), we show in the Appendix that the leakage rate is strictly 

increasing in θ. Thus, the more segregated the fossil fuel market is, the more carbon leakage will there 

be from a CDM project. 

 

We sum up these findings in the following proposition: 

 

Proposition 2: 

In a fossil fuel market with only one fuel, and imperfect substitution between fuels produced in Annex 

B and Non-Annex B, 

a) the carbon leakage of a CDM project increases with the supply elasticity in Annex B and decreases 

with the supply elasticity in Non-Annex B 

b) the absolute value of the carbon leakage increases with the demand elasticity in Non-Annex B, and 

decreases with the substitution elasticity 

c) Given θd = αB = θ and γs = γ, carbon leakage increases with the market shares of domestic 

suppliers. 

 

Figure 1 exemplifies how θ and σ may affect the carbon leakage rate. In this case we have assumed 

that all supply and demand elasticities equal ½ (in absolute value). Then we know from (9) that L = ½ 
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whenever θ = 1, and, from Corollary 1, that L = 0 whenever θ = ½. The figure also confirms the 

findings in Proposition 2 that L increases when σ falls or θ increases. Note that this result is the 

opposite of the outcome of unilateral climate policy in Annex B countries, in which case leakage 

increases with the substitution elasticity (see e.g. the scenarios in Babiker, 2005). As explained in the 

introduction, the reason for this disparity is that in the latter case abatement activity and net leakage 

take place in different regions (Annex B and Non-Annex B, respectively), whereas with CDM projects 

both abatement activity and net leakage take place in the same region (Non-Annex B). 

 

Figure 1: Leakage rates for different values of σ and θ 

 
 

In global CGE models based on GTAP (cf. footnote 11), a standard substitution elasticity between 

imported and domestically produced natural resources (including coal) is 2.8, and the substitution 

elasticity between imports from different countries are typically twice that level (i.e., 5.6). 

Econometric analysis in Hertel et al. (2004) finds quite similar estimate of the latter elasticity for coal 

(i.e., 6.1 with standard deviation 2.4). Given these elasticities, a reasonable estimate for the 
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substitution elasticity between Annex B and Non-Annex B may be in the range 3-5.5.14 Coal trade 

between Annex B and Non-Annex B constitutes about 5% of global coal production (IEA, 2008). 

Thus, if we for instance assume that θ = 0.95 and σ = 4.5, then the leakage rate is 20%. 

 

The model we have used is relevant if the CDM project simply reduces consumption of e.g. coal in 

one particular firm. Another typical CDM project is to replace coal with renewable resources as inputs 

into electric power production. As shown in Appendix D, this will tend to reduce the leakage rate 

somewhat. For instance, in the special case with no fossil fuel trade between Annex B and Non-Annex 

B (θ = 1), and equal magnitude of supply and demand elasticities, the leakage rate is between 33% and 

50%, compared to 50% in the model above (cf. equation 9). On the other hand, if the fossil-based plant 

is closed down and not replaced by a renewable plant, the leakage rate is between 50% and 75% (if all 

elasticities have the same absolute size). 

 

The intuition here is the same as above. When a coal power plant is replaced by a renewable plant, 

demand for coal is reduced. Thus, the coal price declines, coal supply decreases, and coal demand 

outside the CDM project increases. On the other hand, electricity prices are unchanged (as a first order 

effect). However, some of the increased coal demand comes from other coal power producers, leading 

to increased electricity supply and subsequently lower prices of electricity. The carbon leakage rate 

depends on how much coal demand increases outside the CDM project relative to the reduction 

brought about by the CDM project itself. 

 

As shown in Appendix D, numerical simulations suggest that the leakage rate now depends 

significantly on the supply elasticity of fossil fuel and the demand elasticity of fossil fuel from 

consumers outside the electricity market (given that its share of fossil fuels is significant). The 

elasticities in the electricity market are of lesser importance, which seems intuitive as the electricity 

price is only indirectly affected (because a new renewable power plant replaces the old fossil-based 

power plant). Moreover, the share of fossil fuels going to the power market is important for the 

leakage rate, whereas the share of fossil based power in the electricity market is less important. Again, 

this seems intuitive as the price effect in the electricity market is only indirect through the fossil fuel 

market.  

                                                      
14 On the one hand, these substitution elasticities may seem low for coal, as coal is a fairly homogeneous product (despite 
quality differences). On the other hand, transport costs between Annex B and Non-Annex B typically account for a 
substantial fraction of wholesale prices for coal (cf. footnote 9), favouring regional producers.  
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3. Carbon leakage with one global and one regional fossil fuel 
In this section we consider the effects of having two fossil fuels with different trade characteristics. 

We will make the extreme assumption that one fuel is traded only in regional markets (j=R) with no 

trade between Annex B and Non-Annex B markets, and the other is traded freely in a global market 

(j=G), with one common price. Moreover, we disregard any substitution possibilities between the two 

fossil fuels.15 The purpose here is to investigate the effects of reducing emissions of a regionally traded 

fuel (cdmR) vs. a globally traded fuel (cdmG) through a CDM project. As before, we examine the 

effects on global emissions of undertaking an additional CDM project, assuming that the CDM project 

increases the cap on Annex B emissions equivalently: If a CDM project gives cdmj credits, then the 

Annex B cap is increased by cdmj units.  

 

Following the model setup represented by equations (1) – (5), we assume that θR = 0 and σG → ∞. 

Market equilibria before the CDM project is carried out are then given by (both fossil fuels are 

measured in carbon units): 
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We assume that either cdmR or cdmG is zero, and normalize the remaining cdmj to one. We can easily 

see that the leakage rate is L=(ΣjdCj
B), where dCj

B depends on the price effects in Non-Annex B 

(remember that consumption changes in Annex B are exactly matched by consumption reductions in 

                                                      
15 Substitution possibilities are important for coal versus gas (mainly in electricity production), but not so important for oil 
versus gas or coal (since oil is mainly a transportation fuel which gas and coal are not). Significant substitution possibilities 
would reduce the distinction between the globally traded and the regionally traded fuel. 
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the CDM project). By differentiating the equations above and solving for dPB
R and dPG we obtain 

(initial prices still being normalized to one):16 
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and αA and βA denote Annex B’s market shares of demand and supply, respectively, in the global 

market. 

 

The price effect for the regional fuel in Non-Annex B is clearly positive as long as the CDM project 

reduces consumption of this fuel. Moreover, equation (14) yields: 

 

(16) 
R

R B
B R R

B B
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 





  (if cdmR = 1) 

 

which we recognize from equation (9) above.  

 

From equations (15a-b) we see that the price of the globally traded fossil fuel decreases if the CDM 

project reduces the use of this fuel, and increases if the CDM project reduces use of the regional fossil 

fuel. 

                                                      
16 In order to simplify the expressions somewhat, we assume from now on that the initial emissions tax in Annex B is small 
compared to the prices of fossil fuels. The main conclusions still hold if we relax this assumption. 
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The effects on carbon leakage can now be expressed in the following way: 

 

(17a) (1 ) ( )
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In (17b), L > 0: a CDM project that reduces consumption of the global fossil fuel unambiguously 

increases global emissions. In (17a), however, the two terms have opposite signs, and we cannot 

immediately say which term is larger. Thus the impact on emissions of a CDM project that reduces 

consumption of the regional fossil fuel is ambiguous.  

 

This result may seem surprising, given the findings for one fossil fuel in Section 2, where leakage was 

positive given no trade between Annex B and Non-Annex B (θ = 0), and zero with one global fuel  

(σ → ∞). Intuitively, when the cap in Annex B is raised due to the CDM project, the first-order effect 

is to increase consumption of both fossil fuels. However, since consumption of the global fossil fuel in 

Annex B increases less than the decreased energy use due to the CDM project, the global fossil fuel 

price falls. This leads to increased consumption of this fuel in the rest of Non-Annex B, explaining the 

leakage effect. Note that the regional market in Non-Annex B is unaffected in this case. 

 

In order to say more about the effects of a CDM project for the regional fossil fuel, we need to 

combine the two terms in front in equation (17a). A sufficient but not necessary condition for positive 

leakage effect of a CDM project for the regional fossil fuel is then shown to be: 
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For instance, if the ratios of supply to demand elasticities are the same for the two fossil fuels in Non-

Annex B, and Non-Annex B is not a net importer of the global fossil fuel, then the condition is 

fulfilled and leakage is strictly positive.  

 

The intuition in this case is the following: When a CDM project takes place in a regional market, we 

can distinguish between the effects in this regional market and the effects elsewhere (due to the 
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assumption that the regional market in Non-Annex B is not connected to other markets), cf. the two 

terms in equation (17a). In the regional Non-Annex B market we get positive leakage effects along the 

lines discussed before (e.g., in relation to equation (9)). Thus, if e.g. supply and demand elasticities are 

equal in absolute value, this leakage amounts to 50% of the CDM project. When the cap on Annex B 

emissions is increased, consumption of both fossil fuels increases here. This leads to negative leakage 

in Non-Annex B for the global fossil fuel. However, if the cap increase is e.g. equally divided between 

the two fuels, the increased consumption of the global fossil fuel in Annex B amounts to only half of 

the CDM project. Consequently, even if the leakage rate for this particular consumption were e.g. 

50%, relative to the original CDM project, the negative leakage effects amount to merely 25%. Thus 

overall leakage is positive, and equals (50-25)% = 25% in this case. 

 

Although equation (17a) in general indicates that positive leakage is more likely than negative 

leakage, one cannot rule out the possibility of negative leakage. This follows from the argument in the 

previous paragraph: If positive leakage effects in the regional market are small (due to either high 

supply elasticity or low demand elasticity), and the negative leakage effects in the global market are 

big, the overall result may be negative leakage.17  

 

Table 1 below shows leakage rates, based on equations (17a) and (17b), for a CDM project reducing 

the use of either the regionally or the globally traded fossil fuel. As before, in the base case we assume 

that all demand and supply elasticities have the same absolute value (only relative elasticities matter 

for the leakage rates as multiplying all elasticities in equations (17a) and (17b) by a constant leaves L 

unchanged). We also assume equal market sizes and market shares in the base case.18  

 

As seen from Table 1, in the base case the leakage rate is 30% when the CDM project reduces 

consumption of the regional fuel, and 20% when it reduces consumption of the global fuel. However, 

the table further shows that the leakage rate depends significantly on assumptions about elasticities 

and market shares/sizes.  

                                                      
17 This may be seen from equation (17a) with either a sufficiently high supply elasticity ( R

B ) or sufficiently low demand 
elasticity ( R

B ) of the regional good. 
18 That is, demand in the global market equals combined demand in the two regional markets, which themselves are equal in 
size. 
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Table 1: Leakage rate with one globally and one regionally traded fossil fuel 

 cdmR cdmG 
Base case 30% 20% 
γA

j = δA
j = 2γB

j = 2δB
j (Annex B elast. = 2 · Non-Annex B elast.) 36% 14% 

δi
j = 2γi

j (Demand elasticities = 2 · Supply elasticities) 33% 22% 
γi

j = 2δi
j (Supply elasticities = 2 · Demand elasticities) 22% 15% 

γi
G = δi

G = 2γi
R = 2δi

R (Elast. in glob. market = 2 · Elast. in reg. market) 25% 13% 
CG = 2(CA

R + CB
R) (Global market size = 2 · Sum of regional market sizes) 25% 13% 

(αACG + CA
R) = 2((1-αA)CG + CB

R) (Annex B cons. = 2 · Non-Annex B cons.) 36% 11% 
“Oil and coal”a 31% 11% 
“Fossil and non-fossil”b -20% 20% 
a Oil is the global fuel and coal the regional fuel. Market shares are 60/40 and 40/60 for respectively oil and coal 
demand in Annex B vs. Non-Annex B. Equal elasticities. 
b Fossil is global and non-fossil is regional with no market response in Non-Annex B. 
 

In the second-to-last row of Table 1 we assume that oil is the global fuel and coal the regional fuel, 

and have used approximate market shares/sizes from 2007.19 A CDM project that reduces 

consumption of the regional fuel, coal, here has a leakage rate of 31%. In the last row we have 

assumed that regional demand in Non-Annex B is completely unresponsive to demand ( R
B = 0). This 

could illustrate the effects of assuming global fossil fuel markets combined with mitigation of other 

greenhouse gases. If a CDM project reduces emissions of methane, other emissions in Non-Annex B 

are unaffected by this project. However, reduced mitigation in Annex B will have negative leakage 

effects in Non-Annex B, explaining the negative leakage effect in the table. 

 

Above we concluded that the leakage rate could be negative when the CDM project reduces 

consumption of the regional fuel, whereas a CDM project that reduces consumption of the global fuel 

always gives positive leakage. Nevertheless, from Table 1, the leakage rate is highest in the former 

case in all scenarios listed except the last one. The intuition is that the first order leakage effect within 

Non-Annex B is lower when the market is global, as some of the market response takes place within 

Annex B (where total emissions are capped). 

 

Finally, what if either both markets are regional or both markets are global? In the former case we get 

the same conclusion as with one regional fuel, cf. Section 2. If both markets are global (denoted G1 

                                                      
19 There is of course some trading in coal between Annex B and Non-Annex B countries, but one cannot speak of one global 
coal market in the same way as for oil (mainly because of much higher transport costs relative to the value of the fuel). Still, 
this scenario should only be considered as illustrative. 
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and G2), leakage depends on the relative elasticities in the two markets. It can be shown that a CDM 

project that reduces consumption of fossil fuel G1 has a positive leakage effect if and only if:20 

 

(19) 
1 1 1 1 1 1

2 2 2 2 2 2

G G G G G G
A A B B B B

G G G G G G
A A B B B B
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



 

 

We see immediately that if the two markets are equal, there is no leakage (as with only one market). 

More generally, leakage is positive (negative) if the CDM project takes place in the market with the 

less (more) elastic global supply and more (less) elastic demand in Non-Annex B The explanation is as 

follows: The first-order effect of a CDM project in market G1 is to reduce both global consumption 

and the price in market G1, and to increase both global consumption and the price in market G2 

(because the increased cap in Annex B is ‘divided’ between the two markets). If supply in market G1 

is much less elastic than Non-Annex B demand, then leakage in this market is significant positive. The 

first-order effect of reduced demand will mainly be accompanied by increased demand elsewhere in 

Non-Annex B. If supply in market G2 is much more elastic than Non-Annex B demand, then there 

will be little negative leakage in this market. The first order effect of increased demand in Annex B is 

then accompanied by increased supply and only small demand reduction in Non-Annex B. Thus, 

overall leakage is positive. 

4. Conclusions 
The analysis above suggests that the CDM is likely to be accompanied by carbon leakage in Non-

Annex B countries. As a result, global carbon emissions are likely to increase, given that the emissions 

quota for Annex B is raised by an amount equal to the primary emissions reduction resulting from 

CDM projects.  

 

The analysis shows that an important question is to what degree fossil fuel markets are global, and to 

what degree price signals disperse in the market. This varies by fuel, depending not least on their 

transport costs. One extreme here is the oil market, which is basically global with a more or less 

uniform price across countries. Gas markets are by contrast much more divided, due to significant 

transport costs and reliance on existing infrastructure, and to the greater need for long-term contracts 

in setting prices. The coal market, highly relevant with respect to CDM, is global in principle, but 

                                                      
20 If the CDM project takes place for the other fossil fuel (G2), this inequality is turned around. Note that since total Annex B 
demand is capped, demand elasticities in Annex B affect the size of the leakage, but not its sign. 
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transport costs are higher than in the oil market. Thus, trade is more regional than in the oil market, 

and coal prices vary more across regions than in the oil market (this is also due to more quality 

differences). Consequently, market price effects due to reduced coal use resulting from a CDM project 

are typically strongest in the geographical proximity of the project site, and thus leakage effects will 

also tend to be strongest there.  

 

Moreover, in practice end-users do not trade directly in the global fuel markets, and the difference 

between the end-user price and the world market price may vary, and respond to changes in domestic 

demand and supply, at least in the short to medium term. Thus, a given reduction in domestic 

consumption will likely reduce the market price by more in the domestic retail market than in the 

international market (in the short- to medium term). A disproportionate share of the leakage will then 

occur domestically. 

 

What if anything can be done to affect, and correct for, the degree of leakage when awarding credits 

for emissions reductions from CDM projects? One basic difficulty is that the leakage effect of a 

specific project is empirically elusive. It cannot readily be observed as it is scattered among many 

economic agents, each of whom increases its emissions due to market equilibrium effects, in regional 

and/or global markets, and for both energy and final goods. A further complicating factor is that any 

particular incidence of leakage typically cannot be attributed to any one particular CDM project; 

leakage is an overall market phenomenon. A correct assessment of leakage effects requires a complete 

understanding of the structure of fossil fuels markets, which is almost by definition controversial. 

Better empirical work, in particular to pin down key parameters, should enable a more precise 

assessment of leakage effects for individual CDM projects, and thus the degree to which they should 

be credited. 

 

Other well-known problems with the effectiveness of CDM to deliver global GHG emissions 

reductions, such as lack of additionality, and baseline manipulation, can in principle be eliminated or 

at least reduced through appropriate strategies or policies directed at individual CDM projects or CDM 

as a mechanism. For leakage, this is more difficult. Leakage rather needs to be identified and 

quantified through model calculations (we will argue, through procedures discussed in this paper). 

Emissions reduction credits can then be awarded in accordance with the (model based) calculated net 

emissions effects.  
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An important practical question is whether such lack of effectiveness of CDM should be assigned on a 

general basis (say, with a 20% reduction in awarded emissions quotas, relative to the “statutory” 

emissions reductions),21 or rather calculated on an individual or sectoral basis (cf. Vöhringer et al., 

2006). In either case, we will argue, analyses such as that undertaken here, with follow-ups, should 

form the basis for quota allocations. In addition to such analytical work, it is then crucial that key 

parameters that enter our formulas be identified and estimated. While some of these parameters, 

including market shares of different fuels in different markets and their carbon emissions, are 

relatively easy to find, others, such as demand and supply elasticities and elasticities of substitution 

between different fuels, are much harder to assess precisely. Identifying such parameters with 

maximum precision will then be helpful for future assessment of the CDM and its impact on global 

GHG emissions. 

 

We finally need to stress that much of the basic modelling of leakage from CDM projects still remains. 

In particular, we have not studied leakage in the form of relocation of industrial activity through 

product market effects. This, and the topics mentioned above, should all be highly prioritized research 

topics to which we intend to contribute. 

 

                                                      
21 Interestingly, in The American Clean Energy and Security Act, passed by the U.S. House of Representatives June 2009, 
and including inter alia a cap-and-trade system for U.S., one international offset will be transferred into 0.8 allowances from 
2018 (House of Representatives, 2009, pp. 740-743). That is, awarded emission quotas from CDM projects will be reduced 
by 20%. 
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Appendix 

A. Expression for Δ in equations (6) – (8) 
The expression for Δ is given by: 

 

(A1) 2( )B BTC TC      
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We see that all the terms in Φ, Γ and Ψ are non-negative. Moreover, unless θA = θB =1 and either γA = 

0 or  γB = δB = 0, or unless γA =γB = δB = 0, some of the terms are strictly positive. Thus, we conclude 

that Δ is non-negative, and strictly positive except in very special cases. 

B. Proof of Corollary 1 

When θA = θB =1, Δ reduces to  A B A B BTC      . Equation (9) can then be found by inserting 

for Δ in (8) (using also αB =1): 
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When σ→∞, it is straightforward to see that several terms in (A1) become infinitely large. Thus, we 

must have Δ→∞. 
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C. Proof of Proposition 2 
First, let us differentiate with respect to δB. L can then be expressed as (see (8) and (A1)): 
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where K2, K3 > 0 (except in special cases where K2, K3 ≥ 0) and K1 has the same sign as L. Then we 

find that: 
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which has the opposite sign of K1 and thus of L. Hence, d|L|/d|δB| > 0, except when L = 0 initially. 

 

Second, let us differentiate with respect to γA. L can then be expressed as: 
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where Li > 0 (except in special cases where Li ≥ 0). Then it is straightforward to see that L strictly 

increases when γA increases. Hence, dL/d γA > 0. 

 

Third, let us differentiate with respect to γB. L can then be expressed as: 
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where Mi  > 0 (except in special cases where Mi  ≥ 0). Again, it is straightforward to see that L strictly 

decreases when γB increases. Hence, dL/d γB < 0. 

 

Fourth, let us multiply all supply and demand elasticities by a factor k. Then we can write: 
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(A7) 
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where N2, N3 > 0 (except in special cases where N2, N3 ≥ 0) and N1 has the same sign as L. We see that 

by increasing k, L strictly increases in absolute value. Thus, multiplying supply and demand 

elasticities by a factor k > 1 strictly increases the absolute value of L. 

 

Fifth, let us differentiate with respect to σ. L can then be expressed as: 
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where O2, O3 > 0 (except in special cases where O2, O3 ≥ 0) and O1 has the same sign as L. Again, it is 

straightforward to see that the absolute value of L strictly decreases when σ increases, i.e., d|L|/dσ < 0. 

 

Finally, let us differentiate with respect to θ, when we assume θd = αB = θ and γs = γ. The expression 

for L then simplifies to: 
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Then we have: 
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 can be expressed as: 
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All terms in (A11) except the last one are negative, and the sum of these three terms is strictly negative 

unless θ = ½. We know from before that all terms in Δ are non-negative. Thus, let us focus on the 

terms inside the square parenthesis of (A10) that include γδB, knowing that the sum of the remaining 

terms (denoted Λ) must be strictly positive (unless θ = ½). Equation (A10) then becomes: 
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which is strictly positive for θ > ½. We know from before that L = 0 for θ = ½, and L > 0 for θ > ½. 

Hence, we have shown that L is strictly increasing in θ (given the assumptions above). 

D. Leakage from replacing fossil fuels with renewables 
Here we consider a CDM project that replaces coal with renewable resources as inputs into electric 

power production, and examine how this may affect the leakage rate. To simplify we assume θ = 1, so 

that the fossil fuel markets in Annex B and Non-Annex B are completely separated. Although this is 

unrealistic, such an analysis will indicate how the leakage rate is affected by replacing fossil fuels by 

an otherwise unprofitable substitute.  
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Consider an electricity market in Non-Annex B with both fossil and renewable plants. Equilibrium in 

the electricity market before implementing the CDM project can then be expressed as: 
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where SFE denotes fossil-based electricity production, SRE renewable electricity production, and CE 

total electricity consumption. PF and PE denote prices of fossil fuel and electricity, respectively (there 

is no need to distinguish between consumer and producer prices here). cdmB denotes (as before) 

production from a specific fossil based power plant which can be replaced by a renewable plant 

through a CDM project. 

 

Equilibrium in the fossil fuel market can be expressed as:22 
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SF denotes fossil fuel production, whereas CF denotes consumption of fossil fuels outside the 

electricity market. 

 

When the CDM project is implemented, cdmB will be reduced in equation (A14) but not in equation 

(A13) as it is replaced by a corresponding renewable plant. Still, the price of fossil fuel will change, 

and this will also affect the electricity market indirectly. 

 

Normalizing cdmB to one, the leakage rate now equals L = 1 + dSB
F (remember that the cap on 

emissions in Annex B is lifted by one unit, so if emissions in Non-Annex B (SB
F) are reduced by less 

than one unit, leakage is positive). Differentiating equations (A13) and (A14), we obtain: 

 

                                                      
22 We normalize units so that conversion rates between fossil fuel and electricity can be ignored. Conversion rates are 
assumed to be equal across plants. 
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where αFE and βFE denote fossil-based electricity production’s share in the power and fossil fuel 

markets, respectively. 

 

It is easy to show that the leakage rate in equation (A15) is between 0 (if δFE = δF = 0) and 1 (if γF = 

0),23 but it is difficult to read more out of this equation without making further assumptions. If for 

instance all elasticities have the same absolute magnitude, it can easily be shown that the carbon 

leakage rate is between 33% and 50% (depending on market shares). It is also straightforward to show 

that if the closed fossil-based plant is not replaced by a renewable plant, the leakage rate is between 

50% and 75% (if all elasticities have the same absolute magnitude). 

 

Figure A1 illustrates the effects on the leakage rate of the different elasticities. As a benchmark we 

assume that all elasticities are equal to 0.5 in absolute value, and that the market shares are αFE = 0.9 

and βFE = 0.5. The leakage rate is then 0.44. In the figure, one elasticity is changed at a time (assuming 

that |δFE| = γFE). The figure indicates that the two most important elasticities are the supply elasticity of 

fossil fuel (γF) and the demand elasticity of fossil fuel from consumers outside the electricity market 

(δF) (given that its share of fossil fuels is significant). The elasticities in the electricity market are of 

lesser importance.  

 

The leakage rate decreases with the share of fossil based power in the electricity market (αFE), and 

with the share of fossil going to the electricity market (βFE). Simulations indicate that the size of αFE is 

of less importance than the size of βFE.  

 

                                                      
23 All terms are non-negative, and the numerator is less than the denominator. 
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Figure A1. Leakage rates for different values of elasticities 

 
 

 

 


