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Sammendrag 

Det er betydelig regional variasjon i bruk av helsetjenester mellom sykehus. Dette kan reflektere ulike 

faktorer – det kan skyldes at noen sykehus tilbyr flere eller grundigere tjenester enn andre, men det 

kan også forklares ved at sykehusene har ulike pasientgrupper, for eksempel ved at befolkningen i 

høyforbruksregioner har dårligere underliggende helsetilstand, og dermed etterspør mer helsetjenester. 

Analysene våre skiller mellom faktorer knyttet til geografisk område (inkludert sykehuset) og faktorer 

knyttet til pasienten. Dette er mulig ved å studere hvordan bruk av helsetjenester endrer seg når 

personer flytter mellom regioner. Resultatene viser at faktorer knyttet til bosted forklarer rundt 

halvparten av variasjonen i bruk av helsetjenester, mens resten kan forklares av pasientenes bakgrunn. 

Variasjon i forbruk som ikke kan forklares av pasienthelse og -bakgrunn tyder på at noen sykehus er 

relativt mindre effektive enn andre. Imidlertid er det vanskelig å si noe om hva som er det optimale 

forbruksnivået uten å analysere hvordan forbruk påvirker helseutfall. Vi forsøker å svare på dette ved å 

se på sammenhengen mellom forbruk av helsetjenester og helseutfall. I gjennomsnitt finner vi ingen 

statistisk signifikant sammenheng mellom høyt forbruk og død, men når vi går spesifikt inn på ulike 

dødsårsaker ser det ut til at høyforbruksområder har lavere forekomst av kreftdød. Mer generelt finner 

vi at høyforbruksområder har lavere dødelighet fra dødsårsaker som er kjennetegnet ved mer bruk av 

helsetjenester i årene før død. Dette kan indikere at høyforbrukssykehus ikke nødvendigvis er 

ineffektive. 



1 Introduction

Geographic variation in healthcare utilization has raised concerns of possible inefficiencies

in the supply of healthcare. In particular, we may be concerned that some regions are

spending too much on healthcare, given that high utilization regions tend not to achieve

better health outcomes (Finkelstein et al., 2016; Skinner, 2011). In this paper, we leverage

detailed microdata from Norway to answer two questions. First, to what extent is regional

variation in healthcare utilization driven by place-specific factors, as opposed to variation

in underlying patient health? Second, is higher regional supply of healthcare associated

with better health outcomes?

We argue that both questions are central to policymakers seeking to make sense of

regional variation in healthcare utilization. In principle, regional variation in healthcare

utilization can be driven by variation in demand factors, such as patient health, as well

as supply factors, such as physicians’ practice styles. Generally, demand-driven variation

is seen as less problematic - regions may have higher or lower average utilization rates

depending on whether the inhabitants require more or less care. Supply driven variation

on the other hand, typically signals inefficiencies.

On the one hand, variation in hospital region effects could indicate inefficiently high

utilization if higher regional supply does not translate to better health outcomes. In this

case, reducing healthcare utilization in high supply regions can lead to efficiency gains. If,

on the other hand, high supply regions do have better health outcomes, we may instead

be concerned with utilization being too low in low utilization regions, and the prescribed

policy response may involve raising utilization rates in selected regions. In other words,

policy recommendations are likely to depend on the answer to the second question, that

is, the impact of hospital region effects on health outcomes.

Previous research from the U.S. has uncovered substantial regional variation in health-

care utilization (Finkelstein et al., 2016; Song et al., 2010; Baicker et al., 2004; Fisher

et al., 2009, 2003a,b). Finkelstein et al. (2016) finds that 40-50% of this variation is

attributable to patient demand factors, while the rest is explained by supply factors.

The majority of existing papers, however, concludes that regional variation in healthcare
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spending is primarily driven by the supply side (see eg. Cutler et al., 2018; Chandra et al.,

2012; Anthony et al., 2009).

Meanwhile, it is not a priori clear if these findings would translate to a nationalized

single payer healthcare system, where hospitals are similar in terms of payment schemes

and physician incentives, and patients face no to negligible co-payments. Furthermore,

existing literature from the U.S. is mainly based on the Medicare population, which

includes only patients aged 65 years or older. The present paper draws on data from

the entire Norwegian population and includes all major hospitals in the country over the

period 2008-2013, removing concerns about selection into the sample.1

Identifying and estimating hospital region effects in the presence of patient hetero-

geneity is complicated by the fact that patient demand for healthcare is largely unobserv-

able. Individual demographic variables such as age, gender and education, are admittedly

crude proxies for underlying health status. To identify hospital region effects, we follow

closely the approach of Finkelstein et al. (2016), exploiting migration of patients across

hospital referral regions. Specifically, we estimate panel models of log healthcare utiliza-

tion with place and patient fixed effects, controlling fully for time invariant individual

heterogeneity. Similar models with two-way fixed effects have been used previously in re-

search separating the impacts of workers and firms on wage inequality (e.g. Abowd et al.,

1999, 2002; Combes et al., 2008; Card et al., 2013; Gibbons et al., 2014), as well as in

papers studying exposure to neighborhoods on intergenerational mobility, schooling and

mortality (e.g. Chetty and Hendren, 2018a,b; Chetty et al., 2016), teacher quality (e.g.

Rothstein, 2010; Jackson, 2013; Chetty et al., 2014a,b; Mansfield, 2015), and physician

practice styles (Molitor, 2018).

The model allows for movers and stayers to have systematically different utilization,

and for utilization to be correlated with the movers’ origin or destination choices. The

key identifying assumption is that conditional on person and place, mobility is as good

as random with respect to health. Our model thus mirrors a difference in differences

1Data contain all public hospitals as well as private providers contracting with the health authorities.
Very few healthcare institutions operate as for-profit institutions without any contract with public health
authorities.
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design, which requires that trends in latent health demand do not vary systematically

with the movers’ origin or destination. To test this assumption empirically, we implement

an event-study approach, estimating patterns of healthcare utilization around the time

of migration.

In the second part of the paper, we turn to the analysis of health outcomes, estimating

panel models of cause specific mortality rates as functions of the estimated hospital region

effects. This analysis relates to an unsettled literature, mainly from the U.S., on the

relationship between spending and health (see, e.g. Doyle et al., 2015; Joynt and Jha,

2012; Doyle Jr, 2011; Cutler et al., 2018). Our mortality analysis makes two distinct

contributions to this field. First, we link mortality to the estimated patient and hospital

region effects rather than average utilization. Second, we merge information on cause of

death to individual utilization data in order to shed further light on the link between

spending and mortality.

Interpreting the correlation between regional utilization and mortality rate is compli-

cated by the fact that regions with sicker individuals will tend to have higher demand

for healthcare, driving up average utilization rates. This form of omitted variable bias

will lead to a positive correlation between utilization rates and mortality. Meanwhile,

our empirical strategy exploiting interregional migration yields a set of hospital region

effects that are effectively purged of patient demand factors. To be clear, the estimated

hospital region effects may reflect both local variation in the supply of healthcare, as well

as a number of other factors such as environmental or social factors. This can in turn

complicate the analysis of health outcomes, as we cannot distinguish between the impacts

of healthcare supply per se and unobserved place characteristics.

To address this issue, we leverage variation in utilization intensity across causes of

death. If regional supply of healthcare shifts mortality rates, we might expect the largest

effects for conditions where patients tend to use more hospital services in the time leading

up to death, such as cancer. Meanwhile, effects should be smaller for causes associated

with lower average utilization rates, like deaths from external causes. To be clear, we

are not claiming to estimate true causal effects of spending, rather, the models should be
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seen as predictive.2

Our results show that place factors account for roughly half of the gap between average

utilization in high and low utilization regions. This result is robust to a number of sen-

sitivity checks, including alternative hospital market definitions, using balanced samples

to avoid compositional bias, and alternative model specifications. The estimated figures

are similar to those found by Finkelstein et al. (2016), which is remarkable given the

many institutional differences in healthcare systems, in terms of e.g. hospital financing

and physician compensation.

The mortality analysis finds no significant association of hospital region effects and

all-cause mortality. However, the picture changes somewhat when we distinguish between

major causes of death. In particular, the models find that higher hospital region effects

are associated with a statistically significant reduction in cancer deaths. More generally,

higher hospital region effects tend to predict lower mortality from relatively utilization-

intensive causes of death, suggesting that high supply regions may in fact achieve modestly

improved health outcomes.

The rest of the paper is structured as follows. Section 2 describes the institutional

setting and data. Section 3 presents the econometric models and discusses identifying

assumptions. Results are presented in Section 4. Section 5 presents estimated models of

cause specific mortality. Finally, Section 6 concludes.

2 Institutions and data

2.1 Institutional setting

Somatic specialist healthcare in Norway is funded primarily through taxes and trans-

fers from the national government. The reimbursement scheme from national level to

regional health authorities entails a fixed part and an activity-based part. Since 2002

four state-owned regional health authorities have had the overall responsibility for pro-

2Our approach estimating impacts by cause of death can only be interpreted causally if we are willing
to make the strong assumption that cause of death (but not death alone) is uncorrelated with other place
characteristics.
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viding specialist healthcare services to their region’s population. The regional health

authorities own in total 24 health trusts whose task is to execute healthcare provision to

their respective referral regions. A health trust may comprise several hospitals and other

institutions.

Specialized healthcare is rationed by wait time, aiming at prioritizing patients based

on their medical needs for healthcare. Access to hospital services is either by emergency

admissions or through referrals from general practitioners (GPs) acting as gatekeepers,

thus being responsible for all initial assessment, examinations and treatment of patients.

Since 2001 patients who are referred to specialist healthcare have had the right to

choose the hospital at which they want to receive treatment. Patients may choose to be

treated at hospitals outside of their referral region; either at another health trust within

their region or in another region, but the latter is infrequently observed.3

Patients’ healthcare expenses are mainly subsidized by national insurance schemes.

Some services, such as outpatient admissions and visits to GPs are subject to small co-

payment rates. In 2015, the out-of-pocket payment rate for an outpatient procedure was

320NOK (∼40USD). However, once a patient’s yearly total out-of-pocket healthcare ex-

penditures exceed about 2100NOK (∼260USD) all further expenses within that calendar

year are reimbursed.

To summarize, the Norwegian hospital system is characterized by universal coverage,

low co-payments, and a high degree of centralization. Hospitals face the same financial

incentives, and physicians at hospitals are employed on fixed salary rather than on a fee-

for-service or capitation fee basis. This should leave less scope for supply-driven demand,

and similar moral hazard problems.

2.2 Data, sample and summary statistics

The empirical analysis is based on data that combine several administrative registers from

Statistics Norway, the Norwegian Patient Registry (NPR), the Control and Payment of

390% of elective surgeries are performed within the patients’ own region, and 22% chooses a hospital
outside of their catchment region but still within their residential region (Huitfeldt, 2016). An information
service called Free Hospital Choice facilitates the option to choose hospital by making quality indicators
such as expected wait time publicly available.
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Health Reimbursement (KUHR), and the Cause of Death Registry. A unique personal

identifier is provided every Norwegian resident at birth or upon immigration, enabling us

to match the health records with administrative data of the entire resident population of

Norway.

Data provided by Statistics Norway contain birth and death dates, sex, district and

municipality of residence, country of origin, education, occupation, annual earnings and

welfare benefits receipt. These data are linked with patient data from NPR, containing

complete patient level observations for all somatic public hospitals and private hospitals

contracting with regional health authorities in Norway from 2008 onward. Records include

main and secondary diagnoses (ICD10), surgical and medical procedures (NCSP/NCMP),

time of deaths in/out of hospital, exact time, date and institution of admissions and

discharges, time of referral, length of stay, diagnosis groups and diagnosis cost weight.

Each patient discharged at a somatic hospital is assigned a diagnosis group that uniquely

determines the reimbursement rate. Healthcare utilization is defined as an individual’s

yearly total hospital care expenditures, calculated by applying the diagnosis group system

and prices (for year 2012) on each year. We finally add the KUHR database, which

contains all visits in the primary care sector, as well as visits to specialists. Data include

date of visit, diagnosis codes, reimbursement codes and size of patient deductible.

Our sample covers a period of six years, from 2008 to 2013. For the baseline estimation

sample, two additional restrictions are imposed. First, we retain only people aged between

30 and 75. The assumptions underlying our empirical approach may be less likely to hold

for younger and older persons. For younger people, we note that individuals are exempt

from the legal requirement to register change of address while enrolled in education. This

could potentially make mobility data less accurate for teenagers and younger adults, who

may delay changing their address until after they complete schooling. Meanwhile older

adults are more likely to move for health related reasons, which would undermine our

identification strategy. In addition, we exclude people who move between HRRs more

than once during the 6 year period. This restriction eases the event study approach

as all movers will have one well-defined move year. In the robustness section we relax
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this assumption, and estimate the two-way fixed effect model with no restriction on the

number of moves. Note that both the restriction on age and number of moves are applied

only to the baseline estimation sample used to estimate hospital region and patient fixed

effects. In the subsequent analysis of mortality, all ages are retained in the analysis

sample.

The resulting estimation sample contains 15,570,065 person-year observations.4 In

our empirical models, identification of hospital region effects is obtained by individuals

who move between regions. Table 1 shows descriptive statistics for stayers and movers

separately. Compared to stayers, movers are more likely to be male and foreign-born.

Movers are also more likely to be in school - roughly 15% of the movers are enrolled in

education at the first year of observation, compared to 8.4% in the stayer sample. On

average, movers are younger than stayers; a majority of movers are between 30 and 44

years old. Residential origins are quite evenly distributed among movers and stayers,

although slightly more of the movers compared to stayers originate from the South East

region (capital area).

The average person is followed for 5.4 years in the stayer group, and 5.45 in the

moving group. There are several entry and exit routes from the sample: a small share

dies during the study period, 2.5% in the stayer group and 0.5% in the moving group.

Individuals will also enter and exit the age-groups under study (aged 30-75), and there

may be both immigration and emigration; we only observe residents. There are 116,367

unique movers, and 2,792,692 unique stayers (i.e roughly 4% movers).

The moving population has a slightly lower average annual utilization, which again is

likely due to the lower share of elderly among this group. As many as 67% of the movers

never visit the hospital during the study period; the share is only slightly lower in the

stayer population. The distribution of utilization is right-skewed for both movers and

stayers. In Appendix Table A1 we show the full distribution of utilization in logs and

levels.

The main geographic unit of analysis is a hospital referral region (HRR). We will define

4We additionally exclude individuals who move in the first or last year of our sample, as these do not
provide any useful variation.
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Table 1: Descriptive statistics of estimation sample

Stayers Movers

Female 0.49 0.46
Norwegian-born 0.86 0.74
Enrolled in education 0.084 0.15

Age first observed
30-44 0.44 0.69
45-59 0.33 0.22
60-75 0.24 0.089

First observed residence
North 0.096 0.091
Mid 0.14 0.10
West 0.21 0.13
South East 0.56 0.68

Annual health care utilization (USD)
Mean 1184.6 906.3
Standard deviation 5636.8 5296.6
Share of patient-years with zero 0.66 0.68

Average number of years observed 5.40 5.45
Share who dies during study 0.025 0.0049
Number of patient-years 15,080,854 634,012
Number of patients 2,792,692 116,367

Notes: Table shows descriptive statistics for movers vs. stayers aged 30-75 based on data for the period
2008-2013.

these regions in two different ways: (i) 28 local hospitals conditional on them having both

maternity ward and emergency room; (ii) 19 health trusts with defined catchment regions.

Some health trusts do not serve their own catchment region; these may have different

functions or be highly specialized. For both definitions, the hospital referral regions are

defined based on residential municipality. We will apply definition (i) of hospital referral

regions in our baseline estimations; definition (ii) will be used in the robustness section.

Using definition (i), there are on average about 1.9 institutions within each HRR.

As discussed above, patients may seek medical care outside their own region of res-

idence. In our sample, we calculate average utilization rates for the HRRs based solely

on patients’ residence region, regardless of where care was actually provided. About one

fifth of total expenditures occur outside of a patient’s HRR of residence.
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Figure 1: Distribution of utilization (in USD).
Figure shows the distribution of yearly average utilization (in USD) per patient in the 28 hospital referral
regions.

Figure 1 shows the distribution of yearly average patient utilization across HRRs.

The average HRR has an average utilization of 1,412USD per patient per year (standard

deviation 184USD). In Figure A1 we show that the spread is substantial even after purging

utilization for sex, age and educational differences. The geographic pattern of utilization

can be seen in Figure 2, where colors illustrate quintiles of healthcare utilization.

3 Empirical models

We begin our empirical analysis by disentangling the components of utilization attributable

to place-specific heterogeneity, e.g. hospital quality or physician knowledge; and patient-

specific heterogeneity, e.g. health endowment or preferences. Next, we use the estimated

place and patient components to shed light on their relative importance in explaining

differences in average patient utilization across hospital regions. Importantly, our goal

is not to estimate the individual health production function, nor to evaluate the impact

of place on individual utilization. Rather, we aim at exploring sources of differences in

average patient utilization between hospitals.
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Figure 2: Map of Norway. Utilization (in USD) by hospital referral region.
Figure shows the geographic distribution of yearly average utilization per patient in the 28 hospital
regions, divided into quintiles. Thick solid lines mark HRR borders; thin solid lines mark municipality
borders.

3.1 Fixed effects models

The empirical specification closely follows Abowd et al. (2002, 1999); Card et al. (2013)

and Finkelstein et al. (2016) where the dependent variable yit, person i ’s log of utilization

of healthcare (plus 1) in year t, is expressed as a function of individual heterogeneity,

hospital region heterogeneity, and measured time-varying characteristics:

yit = αi + γj(i,t) +Xitλ+ εit, (3.1)
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where i = 1, ..., N, t ∈ {ni1, .., niT}, and the function j(i, t) indicates the hospital region j

of individual i in year t, where j = 1, ..., J . There are Ti observations per individual and

N∗ =
∑

i Ti total observations.5 The component αi is the individual effect, and γj(i,t) is

the hospital region effect. Time-varying covariates are included as Xit, and in the baseline

specification this includes fixed effects for year and age (in 5-year bins) only.6 We explore

richer versions of Equation (3.1) in the robustness section.

As discussed in e.g. Bonhomme et al. (2017), Lamadon et al. (2017) and Finkelstein

et al. (2016), causal interpretation of the parameters in Equation (3.1) rests on two

important assumptions. First, mobility needs to be exogenous to the utilization residual,

which would follow if, e.g., the assignment of individuals to hospital regions is random

conditional on all observable controls and time invariant unobservables. Second, we

assume a log additive functional form. This implies that individuals who move from

hospital region j′ to j′′ will on average experience an average utilization change of γj′′−γj′ ,

whereas those who move in the opposite direction will experience an average change of

γj′ − γj′′ .

These assumptions flexibly allow for rich patterns of sorting, as the moving decision

may be related to αi or γj. For example, the model allows for movers and non-movers

to have systematically different utilization levels, and for utilization levels to be cor-

related with the movers’ origin or destination. Moreover, mobility may be related to

characteristics of hospitals unrelated to utilization, such as geographic location, and of

the individual, such as her earnings potential. We return to a thorough discussion of the

validity of the identifying assumptions below.

The results from the two-way fixed effects model in Equation (3.1) form the basis for

two decomposition exercises that quantify the relative impact of the estimated patient

and hospital region effects. The first is an additive decomposition in means following

5In estimation of model (3.1) we drop the year of move, as we do not have information on the exact
date of move. This exclusion avoids attributing utilization to the wrong hospital region.

6Note that, as the individual fixed effects absorb the cohort effect, age and year are perfectly collinear.
In Table 4 we show that our specification is robust to alternative ways of including age in the model. In
principle, our model could also include fixed effects for relative year of moving (where relative year for
non-movers are normalized to zero). This allows the possibility that the decision to move is correlated
with health shocks. In our baseline model we focus on the simplest model formulated in Equation (3.1),
but the robustness section shows that inclusion of such relative year dummies does not affect our results.
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Finkelstein et al. (2016), where we ask how much of the difference in average utilization

between high utilization regions and low utilization regions can be explained by the type

of patients they have, and how much is due to place-specific factors. Second, we note that

the relative impacts of patient and hospital region effects may also depend on the degree

of sorting, i.e. how the two components are correlated. To examine this, we implement

a variance decomposition exercise where we ask how much of the variation in average

utilization at hospitals is explained by the variance in individual factors, hospital region

factors, and sorting, respectively.

As a starting point for the additive decomposition exercise, we use the estimates from

Equation (3.1), and average over hospital referral regions:

ŷj = c̄j + γ̂j, (3.2)

where ŷj is the sample analog of ȳj, γ̂j are the estimated hospital region effects, and we

label c̄j as an average patient compound effect, comprising fixed effects for patient, age

and year. Hospital referral regions are then split into two groups (A,B) depending on the

average utilization ŷj at the hospitals. We next calculate the difference between the mean

hospital region (compound patient) effect estimates in the two groups, and finally divide

by the difference in average utilization. This renders a hospital region share γ̂A−γ̂B
ŷA−ŷB

and a

patient compound share c̄A−c̄B
ŷA−ŷB

. In one specification we split the hospitals into groups A

and B by median utilization; in a second we include only the top and bottom quartiles.

The variance decomposition is more standard though we perform the exercise at the

hospital level rather than at the individual level. Collapsing Equation (3.1) over hospital

referral regions as in Equation (3.2) and then taking the variance yields7

var(ȳj) = var(c̄j) + var(γ̂j) + 2cov(c̄j, γ̂j). (3.3)

In both decomposition exercises we calculate the standard errors using 500 bootstrap

replications at the patient level. We additionally account for potential limited mobility

7In practice, we separate out the year effect from the patient compound effect in the variance decom-
position exercise.
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bias using a split-sample jackknife approach (Dhaene and Jochmans, 2015).8

3.2 Identifying assumptions

The estimated hospital region effects can only be interpreted causally if mobility is con-

ditionally independent of latent health outcomes. To structure the discussion on en-

dogenous mobility, we follow Card et al. (2013) and assume that the error term εit in

Equation (3.1) consists of three separate random effects: a match component ηj(i,t), a

unit root component νit, and a transitory error ωit:

εit = ηij(i,t) + νit + ωit (3.4)

The match effect ηij(i,t) represents an idiosyncratic utilization premium or reduction ob-

tained by individual i at hospital j, relative to the baseline level αi + γj. Match effects

arise if e.g. some hospitals are highly specialized in treating certain types of patients.

The unit root component νit captures potential drift in the individual’s utilization over

time, such as health deterioration. The transitory component ωit represents any left-out

mean-reverting factors. We assume that ηij(i,t) has mean zero for all i and for all j; and

both νit and ωit have mean zero for each person in the sample.

Sorting on match effects: Bias can arise if individuals sort to hospitals based on the

idiosyncratic match component ηij(i,t). This form of sorting changes the interpretation of

the estimated hospital region effects since different individuals have different utilization

premiums at any given hospital, depending on their match component. In the limit, if all

moves are due to the match component, we could expect all moves to lead to increased

8It is well known that incidental parameter bias caused by a large number of place-specific parameters
is likely to introduce upward bias to the place component and a downward bias to the sorting component,
with the size of the bias depending inversely on the degree of patient migration between hospital regions
(Andrews et al., 2008). We suspect that the bias caused by limited mobility is small in our setting, as we
are only estimating 28 hospital region effects, and there are several hundred movers from each hospital
region. Nonetheless, to correct for potential limited mobility bias we use a split-sample jackknife approach
(Dhaene and Jochmans (2015), see also, Lamadon et al. (2017); Bonhomme et al. (2017)). This estimator
is based on half-sample estimation where, within each hospital referral region, migrants (and stayers)
are randomly split into two approximately equal-sized subsamples. We then estimate Equation (3.1)
separately in each subsample. The bias-corrected estimate is equal to twice the full-sample estimate
minus the mean of the half-sample estimates.
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utilization.

Drift: Endogenous mobility may arise if patients with gradually declining health

systematically move to different types of hospitals. If individuals with deteriorating health

systematically move to high utilization regions, we might overestimate the importance of

hospital region effects, as the drift component νit will be positively correlated with the

change in the hospital region effects. In other words, Equation (3.1) will be biased if

trends in utilization vary systematically with the movers’ origin or destination.

Transitory error: Shocks or fluctuations in the transitory error ωit may be associated

with systematic moves between higher and lower utilization regions. For example, if

individuals who experience a negative health shock (i.e. high utilization) are more likely

to move to higher utilization regions, estimated hospital region effects might be amplified.

3.3 Event-study framework

To assess whether these assumptions hold in our data, we introduce an event-study frame-

work tracking individuals’ utilization before and after they move. This model serves a

dual purpose: having shown that endogenous mobility does not seem to be a concern,

the event-study model’s estimates will give a first indication of the relative importance

of patient and hospital region effects in explaining variation in average utilization.

If everyone moved from low-utilization hospital region j′ to high-utilization hospital

region j′′, we could plot average utilization by relative year to move, and then study

whether the movers increase their utilization. However, in the data we observe people

moving in both directions: from high to low utilization regions and the other way around.

These moves could cancel each other out and produce a flat event-study figure. Moreover,

the ”magnitude” of the moves varies considerably: while some persons move from regions

that are fairly similar, other moves are characterized by much larger differences in average

healthcare utilization in the origin and destination regions. To account for this, we follow

Finkelstein et al. (2016) and augment the standard event-study model to consider both

17



the direction and magnitude of the move. With this in mind, we define

δi = ȳj′′(i) − ȳj′(i)

as the difference in average log utilization in the destination (ȳj′′(i)) and origin (ȳj′(i))

hospital regions. δi can be interpreted as a scaling factor, capturing the direction and

magnitude of i’s move. Appendix Figure B1 shows the distribution of δi. The distribution

is fairly symmetrical with mean just above zero which means that slightly more people

move from low to high utilization hospital regions than there are people moving from

high to low utilization hospital regions.

Having defined the relevant parameters, we formulate the following event-study equa-

tion, where the scaling factor δi is interacted with a set of dummy variables indicating

event time k (i.e. relative year of move):

yit = α′i + βk(i,t)δi +Xitλ
′ + ε′it. (3.5)

Here, as before, α′i are fixed effects capturing any time invariant characteristics of indi-

vidual i, including unobserved characteristics that are correlated with the choice of origin

or destination region, and Xit is a vector of age (in 5-year bins) and year dummies.

The primary coefficients of interest are the βk(i,t), capturing the effects of the relative

year coefficients multiplied by the scaling factor δi. Our data allow estimation of βk for

k =∈ [−4, 4]. The coefficients {β−4, ..., β4} are only identified relative to each other; we

use the normalization that β−1 = 0.

In Appendix B, we show that if the assumptions underlying the two-way fixed effects

model hold, the coefficients βk from Equation (3.5) can be related to the parameters in

Equation (3.1) as follows:

βk =


0 if k < 0

γj′′(i)−γj′(i)
ȳj′′(i)−ȳj′(i)

if k > 0

(3.6)
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Figure 3: Event-study figure
Figure shows point estimates of βk from Equation (3.5).

Since we do not have fully continuous data, in the calendar year of the move (k = 0), the

coefficient should be a positive number between these two values, i.e. β0 ∈
(

0,
γj′′(i)−γj′(i)
ȳj′′(i)−ȳj′(i)

)
.

The event study model also serves to give a first indication of the relative importance

of hospital region effects. Intuitively, if differences in utilization are driven entirely by

differences in patient factors, individual utilization is not expected to change around the

year of move. On the other hand, if the variation in average utilization is driven entirely

by hospital region effects, individual utilization should respond with a one-to-one change

with the magnitude of the move, i.e. coefficients of 1 for k > 0.

4 Results

4.1 Event study results

Figure 3 plots the estimated coefficients βk together with 95% confidence intervals. Recall

that we identified three forms of potentially problematic endogenous mobility: drift,

sorting on matching effects, and correlated fluctuations in the transitory error. First, the

pattern of estimated βk before and after the move gives a direct indication of the presence
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of problematic drift. The figure shows no clear systematic trends in utilization prior to

move, suggesting that drift in individuals’ utilization is uncorrelated with the movers’

origin or destination. The event study also gives an indication of whether fluctuations

in the transitory error ωit systematically correlate with mobility patterns. Generally, we

would expect any systematic moving in response to gradual changes in health status to

give rise to an upward trend in the estimated βk in the years leading up to the move.

The event study model does not find any clear evidence of this.

There are also no signs of any trends post move. A positive sloping post-trend could

be the case in presence of habit formation, where, as outlined in Finkelstein et al. (2016),

today’s patient preferences is a function of historic utilization. If this were the case,

we would expect that people moving from high to low utilization regions experienced

more persistence compared to opposite moves. To investigate this more closely, we have

estimated an event-study model where we separate between people moving from high to

low utilization regions, and people moving from low to high utilization regions. Appendix

Figure C1 indicates no such pattern; both the size of the jump and the post-trend are

similar in the two cases.

Appendix Figure C1 can also be used to evaluate the assumption of no sorting on

match effects. To see this, consider the case with systematic positive sorting on match

effects. In the limit, all moves may lead to increased utilization. In this case, patients

who move from high to a low utilization regions would still see increased utilization.

Estimating the event study model on this subsample could yield event study estimates

that were negative. Meanwhile, if there is no sorting on match effects the change in

utilization around the time of move should be symmetrical. This is exactly what we see:

individuals moving from low to high utilization regions seem to experience utilization

changes that are equal in magnitude (but of different sign) to individuals moving from

high to low utilization regions.9 This provides suggestive evidence against the possibility

of sorting on match effects.

9Recall that event time is scaled by both the magnitude and direction of move. Hence, panel (a),
which plots utilization for individuals moving from high- to low utilization hospital regions, displays a
positive jump upon move although individuals decrease their utilization.
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To further assess the importance of match effects, we estimate a fully saturated model

that includes a dummy for each individual-hospital region pair. If match effects are

important, the saturated model will fit the data much better than the additively separable

baseline model. Adjusted R2 increases only marginally in the saturated model, implying

that the improvement in fit is modest.10

The absence of match effects also provides justification for our log additive model.

Note that log additivity does not, however, completely rule out complementarities, as

patient and hospital region effects affect the level of utilization multiplicatively. This

means, that the level utilization will vary more across places for sicker individuals com-

pared to that for healthy individuals, and that more weight is put on differences in the

lowest part of the utilization distribution.

As discussed in the previous section, if fluctuations in the transitory error ωit system-

atically affect mobility patterns through gradual health deterioration, we would expect

to see an increasing trend in the estimated event time coefficients βk for k < 0. The

estimated coefficients plotted in Figure 3 do not exhibit a clear trend, indicating that

changes in health that happen over time do not systematically correlate with mobility

patterns. In absence of such an increasing trend, the only remaining threat would be a

health shock that induces systematic moving within the same year. Though this is in

general difficult to verify, a likely implication is that such acute conditions would induce

intense treatment immediately following the move. If so, this would have generated a

spike in the first year after the move, and perhaps be more prominent for persons mov-

ing from low to high utilization hospital regions; we observe no such patterns in our

event-study graphs.

To summarize, the estimated event study model lends support to our key identifying

assumptions of conditionally exogenous mobility and log additivity. Figure 3 also gives

a first indication of the relative importance of hospital region effects. The estimated

relative year coefficients βk exhibit a positive jump at the time of the move, from 0 to

approximately 0.4. We can interpret this as the place factors’ share of utilization, or vice

10Baseline model: R2 = 0.4657, Adj.R2 = 0.3478. Saturated model R2 = 0.4693, Adj.R2 = 0.3494.
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versa, that approximately 1 − 0.4 = 0.6 is the patient share. Next, we present results

from the baseline twoway fixed effects model.

4.2 Fixed effects estimates

Estimation of Equation (3.1) by ordinary least squares produces coefficient estimates α̂i,

γ̂j(i,t), λ̂, and ε̂it. Table 4 plots the estimated hospital region effects against average

log utilization. The figure shows an upward sloping, fairly linear relationship between

the two variables: Hospital regions with higher average utilization tend to have higher

estimated fixed effects. Looking at the estimated linear slope coefficient gives an estimate

of the quantitative importance of hospital region effects in determining average hospital

region utilization. To illustrate, if the geographical variation in average utilization was

driven entirely by patient effects, the estimated hospital region effects should not be

correlated with average hospital region utilization, yielding a slope coefficient of zero. In

the opposite scenario, where geographical variation is entirely driven by place specific

factors, the model should yield a slope coefficient of 1. The estimated slope coefficient of

0.49 thus indicates that variation in hospital region effects accounts for roughly half of

the difference in average utilization between hospital referral regions.

We proceed by presenting results from the two decomposition exercises. The additive

decomposition gives the relative shares of patient and hospital region effects, respectively,

in explaining the difference in utilization between hospital regions. Table 2 shows that

place factors account for 39-59% of the difference in utilization between hospital regions

above and below median utilization, while the remainder is explained by patient charac-

teristics. Results are almost equivalent when comparing hospitals with average utilization

in the first quartile to the fourth quartile.

In Table 3 we present results from the variance decomposition exercise, with estimates

for the variances and covariances of hospital region effects, average patient effects and

sorting, as well as their respective shares of the variation in utilization. (See Table

D1 for the full list of estimates). Table 3 additionally shows the split-sample jackknife

results (Dhaene and Jochmans, 2015). The unadjusted estimate of the share of utilization
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Figure 4: Hospital region effects and (average) log utilization across hospital regions.
Figure shows estimated hospital region effects and average patient utilization by hospital regions (from
Equation (3.1))

Table 2: Additive Decomposition of Hospital Level Log Utilization

(1) (2)
Above/below median Top/bottom 25%

Difference in average log utilization
Overall 0.535 0.828
Due to hospital regions 0.263 0.392
Due to patients (id+age+year) 0.271 0.435

Share of difference due to
Places 0.49 0.47

(0.05) (0.05)
Patients 0.51 0.53

Notes: Additive decomposition of log utilization based on estimation of Equation (3.1). Standard errors
are calculated using 500 bootstrap replications at the patient level. R2 is 0.478, while adjusted R2 is
0.362.

explained by place factors is 32%, while the bias corrected measure is smaller, 26%.

The confidence intervals of the non-adjusted place variance share and the bias corrected

estimates are overlapping. Moreover, about 34% of the utilization variation is explained

by patient specific factors in the unadjusted estimate, compared to the bias-corrected

estimate 28%. The sorting component amounts to 34% (bias corrected 46%) of the

variance in average log utilization.

23



Table 3: Variance Decomposition of Hospital Level Log Utilization

(1) (2)
Not bias corrected Bias corrected

Variance of average log utilization 0.12

Variance of hospital region effects 0.038 0.031
Variance of average patient (id+age) effects 0.041 0.034

Covariance of average patient (id+age) and place 0.020 0.027

Share of variance due to
Place 0.32 0.26

(0.06) (0.14)
Patient 0.34 0.28
Sorting 0.34 0.46

Notes: Table shows variance decomposition at the hospital region level. Parameters estimated in Equa-
tion (3.1) are averaged within hospital referral regions. Bias corrected variances and covariances of fixed
effects are estimated using a split-sample jackknife estimator (Dhaene and Jochmans, 2015). Place share
is calculated using 500 replications at the patient level. See Table D1 for the full list of estimates

4.3 Robustness tests

To test the robustness of our estimates, we re-run our main model on different samples

and specifications and perform the additive decomposition exercise for each model. Model

(1) in Table 4 includes place and year effects only. This gives an upper bound of the

hospital region effects, and emphasizes that we will overstate the hospital region effects

if we naively ignore the role of sorting. In row (2) we add an extensive set of individual

control variables; age, female and three categories of educational attainments, including

all combinations of interactions between these controls. This significantly lowers the place

share of utilization differences. Nonetheless, places still account for almost 90% of the

difference in average utilization.

Model (3) reports results from a specification closer to our baseline model (which is

shown in the last row for comparison). Here, place, patient and year fixed effects are

included, but no age effects. This substantially decreases the place share as compared to

the models with no individual fixed effect. Now, the place share amounts to about 46%

of the difference in average utilization between high and low utilization regions, which is

almost identical to the baseline model. Models (4) through (6) present results from other

minor changes to the baseline specification, all of which yield place shares close to the
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baseline model: Model (4) shows results when the baseline model includes relative year

of move fixed effects. This allows the possibility that the decision to move (but not the

direction) is correlated with health shocks. In row (5) we additionally add an interaction

between five-year age dummies, gender, and educational attainment, and in row (6) we

substitute the age dummies with squared and cubic age variables.

Our baseline sample is unbalanced as people are observed for a different number

of years before and after their move. To see whether compositional changes affect our

estimates, we run our model on different subsamples where we for each subsample only

include movers from the same year as well as all stayers. All models give reasonably

consistent estimates in the ranges of the baseline model, perhaps except from the model

with 2009-movers. The additive decomposition is shown in column (7) through (10),

while event-study estimates for each subsample are shown in Appendix E. Eye-balling

the different panels adds confidence to our assumption that trends in utilization are not

systematically related to the origin or destination of movers.

In row (11) we expand our sample to include movers who move multiple times during

the time period. In model (12) we apply an alternative market definition where hospital

referral regions are aggregated into 19 regions, rather than the 28 used in the baseline

model (regions now represent the health trusts rather than local hospitals). Both models

give similar place shares as the baseline. Event-study estimates corresponding to the

higher market level definition are shown in Appendix E.

Next, we estimate the model with log utilization replaced by a binary indicator for

hospital visit (row 13). If regional variation is primarily driven by the intensive margin

(i.e. more services for a given patient), as opposed to the extensive margin, we would

expect the binary model to display less variation in the estimated hospital region effects

compared to that of our baseline model. However, the two models yield comparable

hospital region shares, indicating that hospitals may also differ in the extent to which

patients ever visit the hospital.

We finally estimate the model on a sample of persons aged 65 and older.11 This

11Recall that our baseline sample excludes individuals who are younger than 30 or older than 70.
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Table 4: Robustness tests - additive decomposition

N Mean of y Diff in y
Diff in
place

Place
share S.E.

(1) HRR, year 15,570,065 2.50 0.53 0.54 1.00 0.006
(2) HRR, year,

age*female*educ 15,570,065 2.50 0.53 0.48 0.89 0.006
(3) HRR, patient, year 15,570,065 2.50 0.53 0.26 0.49 0.05
(4) HRR, patient, year,

rel.year, age 15,570,065 2.50 0.53 0.26 0.48 0.05
(5) HRR, patient, year,
rel.year, age*fem*educ 15,570,065 2.50 0.53 0.26 0.48 0.05
(6) HRR, patient, year,

(age2+age3)*fem*educ 15,570,065 2.50 0.53 0.26 0.49 0.05

(7) Movers in 2009 15,213,062 2.50 0.54 0.36 0.67 0.12
(8) Movers in 2010 15,214,399 2.50 0.54 0.25 0.47 0.10
(9) Movers in 2011 15,210,969 2.50 0.54 0.22 0.41 0.09
(10) Movers in 2012 15,202,631 2.50 0.54 0.24 0.44 0.13
(11) Multiple moves 16,112,380 2.49 0.53 0.24 0.45 0.05
(12) Bigger HRR 15,570,065 2.50 0.48 0.23 0.48 0.04
(13) Binary utilization 5,570,065 0.356 0.075 0.036 0.48 0.05

(Baseline) HRR,
patient, year, age 15,598,499 2.50 0.53 0.26 0.49 0.05

Notes: Additive variance decomposition on various samples. Standard errors are calculated using 500
bootstrap replications at the patient level.

corresponds with the “medicare sample” used by Finkelstein et al. (2016). Results are

presented in Appendix F. The event study plot (Figure F1) looks less convincing for this

group. The model estimates an upward path in the event time coefficients in the years

leading up to the move. This indicates that the assumption of conditionally random

mobility may be less likely to hold for this sample, which in turns supports the exclusion

of elderly patients from the main analysis. Estimating the twoway fixed effects model

on this sample yields a place share of 0.67, compared with 0.49 for the baseline sample.

Taken at face value, this suggests that hospital region effects may be more important for

elderly individual’s utilization. However, these results should be interpreted with caution,

given the mobility patterns of Figure F1.

26



4.4 Correlates of hospital region effects

To study the drivers of regional variation, we link the estimated hospital region effects

with observable attributes of the hospital regions, and estimate simple bivariate and

multivariate OLS regressions. These regressions should not be given a causal interpre-

tation. The models presented in previous sections uncovered evidence of sorting, that

is, the estimated place and patient effects are positively correlated. As a result, regions

with higher estimated hospital region effects will tend to have residents who utilize more

healthcare, even though the estimated hospital region effects are purged of the direct

effects of patient demand. More generally, there may be unobserved local characteristics

that drive both the observable attributes and the hospital region effects, giving rise to

spurious correlations.

We study the correlation between hospital referral region fixed effects and the follow-

ing standardized variables averaged at the hospital region level: travel time in minutes to

closest hospital, travel time in minutes to primary care physician, population size, spe-

cialist nurses/midwives per capita, specialist physicians per capita, unemployment rate,

disability insurance rate, local health budget as share of regional budget,12 and primary

care visits.13 Figure 5(a) presents results from bivariate regressions, where the hospital

region effects are regressed separately on each observable characteristics; while Figure

5(b) presents results from a multivariate regression where all observables are included in

one regression. Standard errors are clustered on the HRR level. This results in 28 clusters

which is below what is generally perceived to be the minimum number of clusters required

to perform valid inference. To avoid overstating the significance of the findings, we im-

plement the wild bootstrap for significance tests (Cameron and Miller, 2015; Roodman,

2015).

The bivariate model indicates that rural regions tend to have higher hospital region

effects. The estimated hospital region effects are significantly positively associated with

travel time to nearest hospital and primary care physician (GP), and negatively correlated

12The health budget variables are taken from Fiva and Natvik (2017)
13Note that the utilization measure in the main model only includes specialist care/hospital visits; it

does not include primary care.

27



with population size.

Existing literature finds that regions with more specialists, or more physicians in-

volved in treating one patient, have higher costs and quantities of care (see, e.g. Baicker

and Chandra, 2004; Currie et al., 2016). In the bivariate regressions, however, neither

the number of nurse specialists/midwives per capita, nor physician specialists have any

explanatory power.

Our utilization measure captures hospital utilization, which are services provided by

the state/regional level. Other healthcare services, such as primary care, and services

to the elderly and disabled, are organized at lower levels (municipalities). The health

share of the local budget does not seem to have any economic or statistical significant

association with the estimated hospital region effects. On the other hand, there is a

significant, positive correlation between the hospital region effects and average number of

visits to primary care physicians. This finding could potentially reflect complementarities

of primary and specialist care, which is particularly interesting as primary care is the

gatekeeper for specialist healthcare.

In the multivariate model, travel time to closest hospital and small population size still

predict higher hospital region effects. Moreover, the number of physician specialists per

capita is now positively correlated with hospital region effects. This positive association

is consistent with a story where specialists are driving utilization through e.g. providing

more care. However, the correlation may also reflect long term dynamics, in that regions

with poorer health may have attracted more high skilled medical professionals over time

in response to patient demand.

5 Health outcomes – cause-specific mortality

In the results so far, we have seen that there is substantial variation across regions in

healthcare utilization that cannot be explained by observable or time-invariant patient

characteristics alone. Variation that is driven by hospital region effects is potentially

concerning for policymakers, as it is suggests some places provide inefficiently high or low
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(a) Bivariate regressions
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(b) Multivariate regression

Figure 5: Correlates of estimated hospital region effects.
Standard errors made based on the wild bootstrap using the empirical t distribution, clustered at the
HRR level. Significance level in brackets: * p < 0.10, ** p < 0.05, *** p < 0.01

levels of care. The optimal utilization level is, however, difficult to pinpoint. Utilization

might be high due to over-treatment, suggesting inefficiently high levels of utilization.

On the other hand, high utilization levels may be efficient if this is due to higher quality

of care. A natural question is therefore whether regions with high hospital region effects

achieve better health outcomes.

5.1 Empirical models of mortality

Models linking health outcomes to average utilization rates are typically difficult to inter-

pret because the causality tends to run both ways - while the regional level of care may

affect the health outcomes of residents, the health status of residents would also influence

the demand for healthcare and utilization patterns. The econometric model in this paper

has identified and estimated hospital region effects that control for patient demand. In

this section, we estimate a set of models linking the two estimated components of HRR-

level utilization - the estimated patient and hospital region fixed effects, to cause specific

mortality.

Our baseline empirical approach estimates a linear model of regional mortality rates.

For these models, the sample is collapsed by HRR and demographic group (i.e. age and

1-year age), yielding a sample of regional average age and gender specific mortality rates
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over the 2008-2013 period. Letting dgj denote the mortality rate of group g in region j,

we estimate the following regression equation:

dgj = xgjβ
x + γ̂jβ

γ + c̄jβ
c + εgj (5.1)

where xgt is a vector of gender and age dummies. γ̂j is the estimated γ hospital region

effect of region j, while c̄j is the average estimated patient effect, defined as the sum

of the individual and age effects from Equation (3.1). For reference we also estimate

a model linking dgj to average local utilization ŷj. In order to ease the quantitative

interpretation of our estimates, before the model is estimated average utilization ŷj and

the two components of utilization γ̂j, c̄j are standardized to have mean zero and a standard

deviation of one.

The primary parameter of interest in Equation (5.1) is βγ. This parameter captures

the expected change in mortality rates associated with a one standard deviation increase

in hospital region effect. We want to stress that the estimated relationship should be

thought of as predictive rather than causal. Hospital region effects may be correlated

with other place characteristics such as climate, pollution or economic opportunity, that

affect mortality independent of healthcare spending (see also Finkelstein et al., 2018).

Moreover, there could be nonrandom sorting on health, e.g. if places with high healthcare

spending conditional on patient demand also have healthier residents.14 These concerns

complicate the interpretation of the overall mortality model in Equation (5.1).

Meanwhile, there is considerable variation between the different causes of death in

how much specialist healthcare patients utilize in their last years of life. Total healthcare

utilization during the final three years before death averages 35,052 USD for patients who

die of cancer, compared to 19,090 USD for patients who die of cardiovascular conditions

and 15,157 USD for deaths from external causes. If higher healthcare supply as measured

by larger estimated hospital region effect has a negative effect on mortality, effects should

be larger for relatively utilization intensive causes of death. To study this hypothesis, we

14Note that our empirical model ensures that variation in healthcare spending that results directly
from variation in patient demand is purged from the estimated hospital region effects.
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estimate the regression model in Equation (5.1) separately for each cause of death m, and

link the estimated β̂γm’s to the average utilization intensity within each cause.15 ICD10

codes are used to define grouped causes of death m = 1, ...,M .

If the supply channel is important, effects should be higher for utilization intensive

causes. On the other hand, a lack of correlation between the estimated β̂γm and utilization

intensity may indicate that the relationship between healthcare supply and mortality is

driven by unobserved place heterogeneity.

In addition to linear models of aggregate death rates, we also use the underlying

individual level data to estimate Cox proportional hazards model of mortality.16 For

overall mortality, the hazard function at age τ takes the following form:

r(τ) = h(τ) exp(xitβ
x + γ̂jβ

γ + c̄jβ
c) (5.2)

where xit is gender and education and h(τ) is an unspecified baseline hazard. For

cause-specific mortality, we estimate the corresponding competing risks models (Fine

and Gray, 1999), treating deaths by causes other than m as the competing event. The

models will be estimated by maximum likelihood.

All models are estimated on the full sample of stayers and movers, without age restric-

tions. Estimating the models on the sample of only movers would allow for the inclusion

of origin fixed effects, however we are reluctant to do so for at least three reasons. First,

as indicated in Table 1, the sample of movers is much smaller and deaths comparatively

rare. Second, it would require strong assumptions on exogenous mortality in order for the

model to be informative. In particular, the models do not include individual fixed effects,

and consequently require mobility decisions to be uncorrelated with health status. This

is a stronger assumption than our twoway fixed effects model of utilization rates, which

requires only exogeneity with respect to changes in health status. Third, to the extent

that healthcare supply affects mortality, we might expect the effect to occur with some

lag. This kind of dynamics creates complications not present in the analysis of utilization

15Alternative measures such as the share admitted for at least one inpatient stay yield similar results.
16Duration models with a Gompertz baseline hazard provide qualitatively similar results.
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Table 5: Mortality rates

(1) (2) (3) (4)
All causes Cancer Heart External

Model 1: HRR average utilization
Log utilization -0.401 -0.282∗∗ -0.0172 -0.00965
p-value [0.464] [0.00100] [0.955] [0.720]

Model 2: Estimated place, patient effects
ˆHRR -0.365 -0.216∗∗ -0.0565 -0.00875

p-value [0.237] [0.0220] [0.610] [0.559]

c̄ -0.0929 -0.180∗ 0.0728 -0.000563
p-value [0.839] [0.0660] [0.696] [0.985]

ȳ 8.480 2.199 2.700 0.517
N 5920 5920 5920 5920

Notes: Dependent variable is the death rate per 1000 inhabitants over the 2008-2013 period. Observations
weighted by the population in each demographic x HRR cell. Regressions include controls for gender and
1-year age. Significance tests based on the wild bootstrap using the empirical t distribution, clustered
at the HRR level. p values testing whether the effect is zero in brackets: * p < 0.10, ** p < 0.05, ***
p < 0.01

patterns.

5.2 Mortality results

Table 5 presents selected estimates from linear models of death rates. The first column of

Table 5 shows results on mortality from all causes. Panel one shows that average regional

utilization is not significant in explaining variation in mortality. Panel two shows that

this holds also when the model includes the estimated patient and hospital region effects,

c̄ and ˆHRR. That is, places that have higher healthcare utilization do not appear to

have lower mortality rates.

Estimates for deaths from cancer, heart disease and external causes are shown in

columns 2-4 of Table 5. The model finds a significant and negative estimate of higher

ˆHRR on deaths from cancer. A one standard deviation increase in the hospital region

effect predicts 28 fewer cancer deaths per 100,000, or a 12.8% reduction relative to the

mean. For the two other causes of death studied, hospital region effects have no signif-

icant association with mortality rates. To summarize, Table 5 seems to find a negative

association of hospital region effects and mortality only for deaths from cancer, which is
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the most treatment-intensive of the three groups.

Estimated duration models (Appendix Table E1) yield qualitatively similar results: A

one standard deviation increase in hospital region effects predicts 17.4 percent reduction

in all cause mortality. Competing risks models estimate a corresponding 18.8 percent

reduction in the cancer mortality rate. Meanwhile, the models find no significant cor-

relations between hospital region effects and deaths from heart disease and deaths from

external causes.

To see if this pattern holds more generally we use the first letter of the ICD 10 code

to classify all deaths occurring in the sample period. Equation (5.1) is then estimated

separately for each group.

Figure 6 plots the estimated β̂γ from these regressions against the average log uti-

lization around the year of death. If higher hospital region effects have an impact on

mortality, we would expect the estimated β̂γ to fall with our measure of treatment inten-

sity: higher hospital region effects should have larger effects for conditions that typically

involve more medical interventions in the years leading up to death. Figure 6 finds that

this pattern seems to be present in our data: the model finds larger, negative β̂γ for con-

ditions with high utilization rates, while the estimated β̂γ are around zero for conditions

that are less utilization intensive.

To summarize, while healthcare utilization is not significant in predicting average

mortality rates, we find some evidence of association with cause specific mortality rates.

In particular, higher hospital region effects are significant in predicting lower rates of can-

cer deaths. More generally, higher estimated hospital region effects are associated with

reductions in mortality from causes of death that are characterized by higher healthcare

utilization around the time of death. The estimated effects tend to be somewhat im-

precisely estimated. Still, these results suggest that high place-specific utilization may

translate to better health outcomes, meaning high utilization regions are not necessarily

inefficient.
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Figure 6: Hospital region effects and mortality, by cause of death.
Figure plots estimated β̂γ and average log healthcare utilization in the three years before death, by ICD
10 chapter. Observations weighted by number of deaths in each category.

6 Conclusion

This paper analyzes regional variation in healthcare utilization, with two main objectives.

First, we distinguish between two distinct sources of regional variation: patient effects,

capturing variation in demand across patient population, and hospital region effects,

which we can interpret as the supply of healthcare broadly defined. Following Finkelstein

et al. (2016), we use migration data to decompose regional variation in healthcare uti-

lization, finding that place-specific factors account for roughly half of the total difference

between average utilization in high and low utilization regions, while the rest is explained

by patient characteristics.

The second part of the analysis links the estimated hospital region effects to mor-

tality data. The results suggest that higher hospital region effects are not significantly

associated with overall mortality. Meanwhile, there seems to be a statistically significant
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negative association between higher hospital region effects and mortality for utilization

intensive causes of death, such as cancer. The policy implications of this result are not

immediately clear. First, we should be careful in drawing policy conclusions from these

models, as they are primarily predictive rather than causal. Moreover, even if we were

willing to accept the estimates as causal, there could be heterogeneity in the ability of

hospitals to deliver quality care (Chandra and Staiger, 2017). Finally, from a cost benefit

perspective, the modest reductions in cancer mortality uncovered by our analysis may

not be enough to justify higher spending.

One point of interest was how the relative importance of place would differ in a

centralized system like Norway, compared to the literature which is primarily focused on

the U.S. One could argue that Norway’s centralized single payer system, with hospital

physicians employed on a fixed salary (rather than on fee for service or capitation based

contracts), should be expected to have less variation in place-specific factors in healthcare

delivery compared to a more decentralized system like in the U.S. Our estimated share of

healthcare utilization that can be contributed to hospital regions is slightly smaller, yet

not statistically different from the effect found in Finkelstein et al. (2016), who estimate

that between 50-60% of total variation reflect supply differences. Their paper uses data on

elderly patients, while we look at the full population, making direct comparison difficult.17

Still, the fact that the range of the reported estimates tend to overlap indicates that the

importance of place-specific factors is not dramatically different in the two populations,

despite significant institutional differences.

17When we restrict our estimation sample to individuals age 65 and older, we find that the share
of regional variation attributable to hospital region effects increases somewhat, though the estimated
event study plots for these older patients suggest potentially endogenous mobility, complicating the
interpretation of this result.
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Appendix A

Table A1: Distribution of (level) utilization and log utilization

Percentile

mean 50th 75th 90th 95th 99th

Log

Stayers 2.36 0 5.64 7.99 8.65 9.95

Movers 2.21 0 5.40 7.76 8.45 9.55

Total 2.35 0 5.40 7.97 8.64 9.93

Levels

Stayers 1184.6 0 280.5 2961.4 5736.6 20853.1

Movers 906.3 0 221.4 2334.9 4669.7 14014.1

Total 1173.5 0 221.4 2878.6 5676.6 20605.5

Notes: Distribution of utilization and log(utilization+1) in USD.

Mean= $1,412
SD raw= $184
SD adj.= $134

0

.1

.2

.3

.4

Sh
ar

e 
of

 H
R

R
s

1000 1200 1400 1600 1800 2000
Avg utilization in USD

Raw Adjusted

Figure A1: Distribution of utilization (in USD).
Figure shows the distribution of average utilization (in USD) per patient at the 28 hospital regions. Dark
columns are based on raw data, lighter columns adjust for age, gender and education.
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Appendix B

In Section 3.3, we presented an expression (Equation 3.6) linking the parameters of

Equation (3.5) to model (3.1). In our case where people move only once this can be

seen as follows. Observe that Equation (3.1) can be rewritten as

yit = αi + γj′(i) + Ik(i,t)>0(γj′′(i) − γj′(i)) +Xitλ+ εit

yit = αi + γj′(i)︸ ︷︷ ︸
α̃i

+Ik(i,t)>0

(
γj′′(i) − γj′(i)
ȳj′′(i) − ȳj′(i)

)
︸ ︷︷ ︸
Hospital region share

(
ȳj′′(i) − ȳj′(i)

)︸ ︷︷ ︸
δi

+Xitλ+ εit.
(B.1)

where I is an indicator function equal to one if relative year of moving, k(i, t), is greater

than zero (i.e. k(i, t) = t − move yeari > 0), and zero otherwise.18 For non-movers,

I is 0 for all t. γj′(i) and γj′′(i) denote hospital region effects in origin and destination,

respectively. Note that the term
γj′′(i)−γj′(i)
ȳj′′(i)−ȳj′(i)

corresponds to the share of utilization dif-

ference between the origin and destination regions which can be explained by hospital

region effects.

Using the definitions α̃i = αi + γj′(i) and δi = ȳj′′(i) − ȳj′(i) (defined in Section 3.3),

Equation (B.1) can be rewritten as

yit = α̃i + Ik(i,t)>0

(
γj′′(i) − γj′(i)
ȳj′′(i) − ȳj′(i)

)
δi +Xitλ+ εit. (B.2)

Below, we reproduce the event-study equation from Section 3.3:

yit = α′i + βk(i,t)δi +Xitλ
′ + ε′it. (3.5, revisited)

Equation (B.2) and equation (3.5) will be equivalent if the following holds true for βk:

βk =


0 if k < 0

γj′′(i)−γj′(i)
ȳj′′(i)−ȳj′(i)

if k > 0

18Note that since the variables are not measured in continuous time, the indicator function is mis-
specified in the year of move. In practice, we solve this by dropping the move year when estimating the
two-ways fixed effects models.
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Figure B1: Distribution of destination-origin difference in log utilization (δi).
Figure plots the distribution of δi, i.e. the difference in average log utilization in the destination and
origin regions. Sample is all movers (N=707,464 person-years)
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(a) From high- to low utilization hospital regions
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(b) From low- to high utilization hospital regions

Figure C1: Event study by direction of move.
Figure shows point estimates of βk from Equation (3.5) when the event study is estimated separately by
the direction of move. Panel (a) displays utilization for individuals moving from high- to low utilization
regions (δi < 0), while panel (b) plots utilization for individuals moving from low- to high utilization
regions (δi > 0).
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Appendix D

Table D1: Variance Decomposition of Hospital Level Log Utilization

(1) (2)
Not bias corrected Bias corrected

Variance of log utilization 0.12 0.12
Variance of patient effects 0.041 0.034
Variance of year effects 0.0000012 0.0000012
Variance of hospital region effects 0.038 0.031
Covariance patient and year effects -0.00017 -0.00017
Covariance patient and hospital region effects 0.020 0.027
Covariance year and patient effects -0.00017 -0.00017
Covariance year and hospital region effects -0.00016 -0.00016
Covariance hospital region and patient effects 0.020 0.027
Covariance hospital region and year effects -0.00016 -0.00016
Correlation patient and year effects -0.77 -0.82
Correlation patient and hospital region effects 0.50 0.73
Correlation year and patient effects -0.77 -0.82
Correlation year and hospital region effects -0.73 -0.81
Correlation hospital region and patient effects 0.50 0.73
Correlation hospital region and year effects -0.73 -0.81

Notes: Table shows variance decomposition at the hospital region level. Parameters estimated in Equa-
tion (3.1) are averaged within hospital referral regions. Patient effects are compounds of id and age
effects. Bias corrected variances of fixed effects are estimated using a split-sample approach (Dhaene
and Jochmans, 2015).
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in 2009
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(c) Balanced population of movers
in 2010
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(d) Balanced population of movers
in 2011
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Figure D1: Event-study figures for alternative samples and hospital region definition.
Panel (a) uses the 19 health trusts as hospital referral region. Panels (b)-(e) use balanced samples of
movers depending on the year of move.
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Appendix E

Table E1: Mortality: competing risks model

(1) (2) (3) (4)
All causes Cancer Heart External

Model 1: HRR average utilization
Log utilization 0.984 0.936∗∗ 1.123∗∗∗ 0.845∗

(-0.29) (-2.20) (2.94) (-1.80)

Model 2: Estimated hospital region, patient effects
ˆHRR 0.850∗∗ 0.845∗∗∗ 1.034 0.992

(-2.54) (-4.27) (0.42) (-0.06)

c̄ 1.118∗∗ 1.024 1.209∗∗∗ 0.737
(2.10) (0.71) (3.61) (-1.55)

N 4789765 4789765 4789765 4789765

Notes: Cox mortality estimates. Column (1) shows selected estimates from Cox models, columns (2)
- (4) show selected estimates from competing risks regressions. Exponentiated coefficients; t statistics
in parentheses. Regressions include controls for gender and 1-year age. * p < 0.10, ** p < 0.05, ***
p < 0.01
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Figure F1: Event study on ages 65-99 (’Medicare population’)

N Mean of y Diff in y
Diff in

hosp reg
Hosp reg

share

Ages 65-99 (‘Medicare sample’) 4,694,649 3.94 0.57 0.38 0.67

Baseline sample 15,598,499 2.50 0.53 0.26 0.49
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