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Samandrag 

Omfangssensitivitet i miljøverdsetting inneber at folk er viljuge til å betala meir for høgare kvalitet 

eller kvantitet av eit ikkje-prissett miljøgode. Dokumentasjon av signifikant omfangssensitivitet har 

vore ein viktig validitetssjekk i fleire tiår i uttrykte preferansemetodar, primært på betinga verdsetting. 

I nyare tid har forsking byrja å differensiera mellom statistisk og økonomisk signifikans. Denne 

studien bidreg til denne forskinga ved å evaluera omfangseffektar i valeksperiment ved å nytta 

omfangselastisitet av betalingsviljugskap som konsept. Først formaliserer vi 

omfangselastisitetskonseptet for valeksperiment og relaterer det til økonomisk signifikans. Deretter 

gjennomgår vi eit utval av valeksperiment studiar frå ulike fagfelt for å estimera studiane sine 

implisitte omfangselastisitetar. Frå dette observerer vi at validitetssjekk er uvanleg i valeksperiment 

litteraturen, og dei fleste studiar antek at elastisiteten er ein ved å nytta lineær funksjonsform. I studiar 

med meir fleksibel funksjonsform observerer vi ein tendens mot uelastisk omfangssensitivitet. Vidare 

nyttar vi oss av omfangselastisitetskonseptet på eigne valeksperimentdata som inneheld informasjon 

om folk sine preferansar for å ekspandera produksjonen av fornybar energi i Noreg. Vi finn at alle 

beregna omfangselastisitetar er statistisk signifikante og varierer mellom 0,18 og 0,46, avhengig av 

attributt analysert, empirisk modellspesifikasjon, geografisk underutval og einingsmål valt for eit 

hovudattributt. Sjølv om det er ingen gitt universal standard for å fastslå økonomisk signifikans av 

omfangseffektar, ser vi på desse estimata som tilstrekkelege og truverdige. Implikasjonar av resultata 

våre for vidare forsking på og nyttegjering av valeksperiment blir også gjevne. 
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1. Introduction

Sensitivity to scope in nonmarket valuation refers to the property that people are willing to pay more 

for a higher quality or quantity of a nonmarket public good (Carson et al., 2001; Freeman et al., 2014). 

Establishing significant scope sensitivity has been an important check of validity and a point of 

contention for decades in stated preferences (SP) research, primarily in contingent valuation (CV) 

surveys (Kahneman, 1986; Mitchell and Carson, 1989; Kahneman and Knetsch, 1992; Desvousges et 

al., 1992; Diamond and Hausman (1994); Whitehead et al., 1998; Berrens et al., 2000; Heberlein et 

al., 2005; Lew and Wallmo, 2011; Hausman 2012; Kling et al., 2012; Haab et al., 2013; Whitehead, 

2016).1

At the one extreme, some researchers have claimed general methodological invalidity in light of the 

failure of some studies to establish statistically significant scope effects (Hausman, 2012). Recently, 

however, several authors have made compelling arguments to the effect that the scope sensitivity and 

validity of a study cannot be assessed purely on the basis of tests of statistical significance (e.g., 

Amiran and Hagen, 2010; Whitehead, 2016; Lopes and Kipperberg, 2020). The extent to which 

estimated scope effects are economically significant (McCloskey and Ziliak, 1996; Thorbecke, 2004) 

may be equally important. Related to economic significance are the concepts of adequacy, i.e., 

whether the estimated scope effects exceed a minimum threshold, and plausibility, i.e., whether the 

estimates are believable for the particular empirical context (Arrow et al., 1994; Whitehead, 2016).23  

A specific measure proposed for assessing the economic significance of sensitivity of scope in CV 

studies is scope elasticity of willingness-to-pay (WTP) (Amiran and Hagen, 2010). Scope elasticity of 

WTP measures the ratio of the percentage change in WTP for a nonmarket good relative to the 

percentage change in its quantity or quality. Amiran and Hagen (2010) demonstrate that in the case of 

strictly convex neoclassical preferences scope elasticities of WTP need only be greater than zero and 

less than one. One challenge, then, is that elasticities close to zero may be difficult to detect 

statistically. Whitehead (2016) goes on to elaborate on the economic intuition underlying the concept 

1 See Lopes and Kipperberg (2020) for a recent overview. 

2 Estimated scope effects in economic models can be statistically significant without being economically significant and vice 

versa. In the latter case, lack of statistical precision may lead to failure to reject the null hypothesis of no impact, even when 

point estimates are indicative of economic significance. Ideally, of course, a well-designed study with sufficient power can 

establish both statistical and economic significance. 

3 In this paper, we focus on the economic significance of the change in welfare estimates in relation to the discussion of 

methodological validity rather than the economic significance of the welfare estimates themselves. For example, an 

environmental amenity could be associated with a substantial non-market value, deemed economically significant, which does 

not vary much with its provision level. Conversely, another environmental amenity may have a modest value that nonetheless 

increases substantially at higher provision levels.   
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of scope elasticity and applies it in a re-assessment of several CV studies that initially had their scope 

sensitivity questioned. He argues that the implied scope elasticities of WTP in these studies are within 

a plausible range and satisfy economic significance.4  

 

The issue of sensitivity to scope has also been explored in the discrete choice experiment (DCE) 

literature, but to a much lesser extent than for CV (e.g., Layton and Brown, 2000; Lew and Wallmo, 

2011; Johnston et al., 2017). As in CV studies, sensitivity to scope in DCEs implies that people are 

willing to pay more for a larger quantity or better quality of a good. For a good, as opposed to a bad, 

this is usually indicated as higher attribute levels, all else held equal. Depending on the experimental 

design, variation in the levels of quantitative attributes facilitates scope sensitivity examination 

through the estimation of indirect utility functions with linear and non-linear functional forms. For 

example, Layton and Brown (2000) estimate a piecewise linear indirect utility function to test whether 

the WTP to avoid larger forest losses due to climate change is higher than the WTP to avoid smaller 

losses. Lew and Wallmo (2011) perform scope tests across a number of protected endangered species 

as well as their protection levels. Both studies establish statistically significant scope effects. Neither 

study discusses adequacy, plausibility, or economic significance, though Layton and Brown (2000) 

refer to their results as “economically sensible” and “economically reasonable”.5 

 

It is important from both a methodological point of view and a policy perspective to further develop 

and include scope tests in DCE studies as well as in CV research. Methodologically, scope sensitivity 

continues to be discussed in relation to SP validity. As pointed out in the SP guidance by Johnston et 

al. (2017, p.374): “Underlying the challenge for SP validity testing is the lack of general agreement on 

whether results from individual studies (or sets of studies) should be interpreted as evidence for or 

against the validity of the method in general. Recognizing this lack of agreement over what constitutes 

an acceptable validity test for SP studies, we recommend continued investigation of both current and 

new tests as an important area for future research.” From a practical resource management 

perspective, policymakers are typically interested in assessing different policy alternatives and 

associated attributes varying in magnitude (e.g. degree of environmental protection), with increasing 

opportunity costs. If the social benefits of the policy should turn out to be invariant to the public good 

provisioning levels, the optimal decision would be simple. The policymakers should choose the lowest 

                                                      

4 The scope elasticity concept can be applied generally to assessment of the sensitivity of welfare measures to scope, both WTP 

and willingness to accept (WTA). For simplicity, we only refer to the scope elasticity of WTP here.  

5The presence of scope sensitivity in SP studies can be assessed by means of external or internal tests. In DCEs, scope 

significance is typically identified by means of a combination of within- and across-respondent variation in attribute levels 

(e.g., Layton and Brown, 2000). The split-sample, external scope test in the DCE of Lew and Wallmo (2011) is an exception.  
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cost alternative. In many circumstances, such a finding would seem implausible and not be useful for 

decision-making.  

 

In this paper, we investigate scope effects through the lens of the scope elasticity of WTP concept. To 

our knowledge, no other DCE study have used this analytical framework. We provide a theoretical 

discussion, methodological perspectives, and a unique empirical application. We begin by formalizing 

scope elasticity of WTP both generally and specifically in the DCE context (Section 2). Then we 

review a selection of DCE studies from different fields and derive their implicit elasticity estimates 

(Section 3). The literature analysis leads to the following three observations: i) explicit investigations 

of scope sensitivity in DCE studies seem uncommon; ii) many studies assume unitary elastic scope 

sensitivities through their choice of a restrictive functional form; and iii) studies that utilize flexible 

functional forms tend to find inelastic effects, consistent with diminishing marginal utility from 

attribute improvements.  

 

Following the literature discussion, we apply the scope elasticity of WTP concept to study preferences 

for renewable energy expansion in Norway (Sections 4 and 5). We provide baseline results for two 

quantitative attributes (new renewable energy production and new wind power installations) and 

investigate whether elasticity estimates vary across model specifications, geographic subsamples with 

different levels of familiarity and exposure, and experimental variation in the unit of measurement of 

the wind power attribute. This analysis is generally motivated by the lack of attention to DCE scope 

effects revealed by the literature review. More specifically, the exploration of familiarity and exposure 

is motivated by the existing literature on habituation (e.g., Wilson and Dyke, 2016; Zerrahn, 2017) 

while the exploration of unit of measurement is motivated by emerging research on choice architecture 

and attribute translations (e.g., Hertwig and Grüne-Yanoff, 2017; Ungemach et al., 2018). 

 

Overall, the analyses in this paper show that scope sensitivity can vary between attributes and across 

conceptual, methodological and empirical dimensions of studies, which suggests that economic 

significance must be assessed on a case-by-case basis. Final reflections and recommendations for 

future DCE work are provided in Section 6.  
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2. Conceptual framework 

The concept of scope elasticity of WTP was first proposed by Amiran and Hagen (2010) to address the 

economic significance of scope sensitivity in CV research. Whitehead (2016) then applied the concept 

in simulation analyses and empirical illustrations. Existing CV studies that have subsequently reported 

scope elasticity estimates include Burrows et al. (2017), Borzykowski et al. (2018), and Lopes and 

Kipperberg (2020).  

 

A major appeal of the scope elasticity of WTP framework is that it provides a unit-free measure of the 

ceteris paribus responsiveness of an endogenous variable of interest (in this case, WTP) to a change in 

an exogenous variable (in this case, environmental quality). As such, it is similar to other important 

elasticity measures in economics (e.g., own-price elasticity of demand; input-price elasticity of supply; 

income elasticity of WTP). Specifically, the scope elasticity of WTP is defined as the ratio of 

percentage change in WTP to the percentage change in environmental quality. A scope elasticity of 

zero signals absence of impact, or no scope effect, whereas a scope elasticity of one means 

proportional responsiveness. Elasticity estimates within the 0 to 1 interval imply less than 

proportional, i.e., inelastic, impact. Such an elasticity would be expected under neoclassical 

microeconomic convexity priors regarding the trade-off between market and nonmarket goods 

(Amiran and Hagen, 2010; Whitehead, 2016). For example, a scope elasticity of 0.4 suggests that a 

10% increase in environmental quality is associated with a 4% increase in WTP. However, the scope 

elasticity could also be greater than one, suggesting disproportionally large, i.e., elastic, 

responsiveness. Elastic WTP responsiveness to a change in scope is consistent with increasing 

marginal utility of an economic good or increasing disutility from an economic bad. Indeed, some of 

the DCE studies reviewed in Section 3 report estimation results that imply scope elasticity greater than 

one (e.g., Layton and Brown, 2000). 

2.1 Defining the scope elasticity of WTP in general  

Let 𝑊𝑇𝑃 = 𝑊𝑇𝑃(𝑞, 𝒛) represent a general value function for a representative consumer, where q is a 

scalar measure of the level of environmental quality and 𝒛 is a vector of other factors influencing the 

consumer’s valuation (including income). The scope elasticity of WTP (𝐸𝑊𝑇𝑃) is then given by:  

 

(1)  𝐸𝑊𝑇𝑃 ≡
%∆𝑊𝑇𝑃(𝑞,𝒛)

%∆𝑞
= (

𝜕𝑊𝑇𝑃(𝑞,𝒛)

𝜕𝑞
) ∙ (

𝑞

𝑊𝑇𝑃(𝑞,𝒛)
). 
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For a non-marginal change in environmental quality, say from q0 to q1, where q1 > q0 , with associated 

change in WTP from WTP0 to WTP1 (WTP1   WTP0), the midpoint formula can be utilized to define a 

scope arc elasticity (𝐸̅𝑊𝑇𝑃) as follows: 

 

(2) 𝐸̅𝑊𝑇𝑃 ≡
%∆𝑊𝑇𝑃(𝑞,𝒛)

%∆𝑞
= (

∆𝑊𝑇𝑃(𝑞,𝒛)

∆𝑞
) ∙ (

𝑞̅

𝑊𝑇𝑃̅̅ ̅̅ ̅̅ ̅
), 

 

where ∆𝑞 = 𝑞1 − 𝑞0 > 0, ∆𝑊𝑇𝑃 = 𝑊𝑇𝑃1 − 𝑊𝑇𝑃0  ≥ 0, and 𝑞̅ and 𝑊𝑇𝑃̅̅ ̅̅ ̅̅ ̅ are, respectively, average 

environmental quality (
𝑞0+𝑞1

2
) and average WTP (

𝑊𝑇𝑃0+𝑊𝑇𝑃1

2
). 

2.2 Defining scope elasticities in DCE 

Scope sensitivity in DCEs means that people’s WTP for a specific attribute (good/bad) is 

(increasing/decreasing) in its level, all else held equal. However, multi-attribute discrete choice 

situations are typically motivated from a random utility model (RUM) framework, not via a direct 

valuation function, as above. Therefore, let indirect utility (U) be represented by 𝑈 = 𝑉 + 𝜀, where V 

is the deterministic component and 𝜀 is the random component (see e.g. Hensher et al., 2005). For the 

sake of simplicity, we ignore the latter term and focus on deterministic indirect utility. Let 𝑉 =

𝑉(𝒑, 𝒒, 𝑀) be a generalized deterministic indirect utility component, where 𝒑 is an exogenous price 

vector, 𝒒 represents nonmarket goods and amenities exogenously provided (including various 

environmental quantity and quality attributes), and 𝑀 is exogenous consumer income. The utility an 

individual derives from any given policy or resource managemenet scenario, say alternative j, is then 

given by 𝑉𝑗(𝒑, 𝒒𝑗, 𝑀 − 𝐵𝑗), where Bj is the fee or tax payment for that scenario. Faced with J mutually 

exclusive alternatives, the consumer prefers the alternative that yields maximum indirect utility, 

meaning that alternative k is chosen provided 𝑉𝑘(𝒑, 𝒒𝑘, 𝑀 − 𝐵𝑘) > 𝑉𝑗(𝒑, 𝒒𝑗, 𝑀 − 𝐵𝑗), ∀ 𝑘 ≠ 𝑗 ∈ 𝐽. 

 

The ceteris paribus marginal willingness to pay (MWTP) for a change in the level of a specific 

attribute, say attribute s (𝑞𝑠 ∈ 𝒒), is given by the marginal rate of substitution (MRS) between that 

attribute and the consumer’s money income: 

 

(3)  𝑀𝑊𝑇𝑃(𝑞𝑠) = 𝑀𝑅𝑆𝑞𝑠,𝑀 =
𝜕𝑉(∙)/𝜕𝑞𝑠

𝜕𝑉(∙)/𝜕𝑀
.  

 

However, DCE researchers are often interested in non-marginal changes in amenity or attribute levels 

due to changes in public policy and management regimes. We therefore consider discrete changes in q 



 

9 

and associated changes in WTP implied by the indirect utility given above. Let ∆𝑠
𝐴= 𝑞𝑠

𝐴 − 𝑞𝑠
0 and ∆𝑠

𝐵=

𝑞𝑠
𝐵 − 𝑞𝑠

0, ∆𝑠
𝐵> ∆𝑠

𝐴 represent two different discrete increases in the level of attribute s, where both these 

increases are considered improvements. The two associated WTP measures (WTPA and WTPB) are 

defined implicitly from the indirect utility function in the following manner:  

 

(4) 𝑉(𝒑0, 𝒒0, 𝑀) = 𝑉(𝒑0, 𝒒𝐴, 𝑀 − 𝑊𝑇𝑃𝑗), j = A or B.  

 

Subsequently, a scope arc elasticity of WTP can be defined analogously to equation (2) as: 

 

(5) 𝐸̅𝑊𝑇𝑃 ≡
%∆𝑊𝑇𝑃

%∆𝑞𝑠
= (

𝑊𝑇𝑃𝐵−𝑊𝑇𝑃𝐴

(𝑊𝑇𝑃
𝐵

+𝑊𝑇𝑃𝐴)/2
) / (

∆𝑠
𝐵−∆𝑠

𝐴

(∆𝑠
𝐵

+∆𝑠
𝐴)/2

).  

 

For the linear specification of the deterministic indirect utility often employed in DCE research, that 

is, 𝑉𝑗 = 𝛼𝑗 + 𝜷𝒒𝒒𝑗 + 𝛽𝑀(𝑀 − 𝑩𝑗), 𝑀𝑊𝑇𝑃(𝑞𝑠) = 𝛽𝑞𝑆
/𝛽𝑀 and 𝐸̅𝑊𝑇𝑃 = 1.6 This means that the 

estimated scope elasticity is one provided the estimated MWTP is statistically significant (greater than 

zero). Since it would be difficult to argue that proportional responsiveness in a welfare estimate with 

respect to scope does not satisfy economic significance, this functional form is meaningless in terms of 

distinguishing between statistical and economic significance of scope effects. Researchers who wish to 

explore such distinction must therefore turn to more flexible functional forms. 

2.3 Adequate, plausible, and economically significant scope sensitivity 

Amiran and Hagen (2010) show that neoclassical utility functions with strictly convex preferences 

have scope elasticity bounded by zero and one (Proposition 1, p. 59). Furthermore, 𝐸̅𝑊𝑇𝑃 = 1 implies 

perfect substitution between environmental quality and market goods, whereas 𝐸̅𝑊𝑇𝑃 = 0 suggests a 

perfectly complementary relationship. Importantly, many well-behaved preference representations can 

imply “arbitrarily small” scope elasticities. These results have important implications for empirical 

research. First, any given application may reveal relatively moderate, but legitimate, scope effects. 

Second, when the underlying scope sensitivity is low in the true data-generating process, it is more 

challenging to statistically distinguish scope elasticity estimates from zero.  

 

Whitehead (2016) points out that the panel of experts formed by the National Oceanic and 

Atmospheric Administration (NOAA) to assess the CV method (Arrow et al., 1993) was as much 

                                                      

6 The proof of this claim is provided in the Appendix. 



 

10 

concerned with economic significance as with statistical significance. Specifically, the NOAA panel 

was concerned with the adequacy or plausibility of estimated scope effects in CV studies (Arrow et 

al., 1993; Arrow et al., 1994). Whitehead (2016) interprets adequatcy as a sufficiency condition (i.e., a 

minimum threshold criterion). While the literature has yet to establish such a condition, it is evident 

from the conceptual analysis in Amiran and Hagen (2010) that it could be arbitrarily close to zero. In a 

follow-up to Arrow et al. (1993), Arrow et al. (1994) provide the following clarification: “Had the 

panel thought that something as straightforward as statistical measurability were the proper way to 

define sensitivity, then we would (or should) have opted for language to that effect. A better word than 

‘adequate’ would have been ‘plausible’: A survey instrument is judged unreliable if it yields estimates 

which are implausibly unresponsive to the scope of the insult. This, of course, is a judgment call, and 

cannot be tested in a context-free manner”. In line with this sentiment, Whitehead (2016) favors using 

a case-by-base examination of whether scope effects are “plausible”, “believable” or “within the realm 

of possibility”. This recommendation is supported by his Monte Carlo scope elasticity simulations, 

which indicate that 95% of the draws lie between 0.630 and 0.998 in the case of a simple linear WTP 

function and between 0.177 and 0.971 in the case of a quadratic WTP function. A re-assessment of 

several previously contested CV studies reveals plausible scope elasticities between 0 and 1 

(Whitehead, 2016).  

3. Scope elasticities in previous DCE studies 

To our knowledge, no previous DCE study has explicitly analyzed the scope elasticity of WTP for 

attribute improvements. Nonetheless, many studies report estimation results from which it is possible 

to infer scope elasticities. Here, we first illustrate this by examining a purposive sample of studies 

from environmental economics and other fields that utilize DCE methodology (Table 1). Then we 

examine prior DCE studies specifically related to wind power preferences. These studies were 

identified from the meta-analysis of Mattmann et al. (2016) and supplementary Google Scholar 

searches (Table 2 in Section 3.3).   

3.1. Examples from environmental economics 

In Table 1, Adamowicz et al. (1994), Boxall et al. (1996), and Adamowicz et al. (1998) represent 

three pioneering DCE studies in environmental valuation. Adamowicz et al. (1994) apply DCE as a 

supplement to the travel cost method to analyze choice of recreational fishing site. A key attribute in 

the study is expected fish catch, ranging from one fish caught per four hours to one fish caught per 35 

minutes. This attribute is highly significant in estimations, implying scope sensitivity. However, the 

linear functional form of indirect utility imposes constant marginal utility and a scope elasticity of one.  
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Table 1: Inferred scope elasticities of WTP in selected DCE studies from different fields 

Source Field 
Scope 

attribute(s) 

Functional 

form(s) 

Scope 

discussion 

Implied scope 

elasticity 

Adamowicz et al. 

(1994) 
ENV Fish catch rate 

Continuous 

linear 
No 1 

Boxall et al. 

(1996) 
ENV 

Moose 

encounters 

Piecewise 

linear (effects 

code) 

No 0.51 

Adamowicz et al. 

(1998) 
ENV 

Caribou 

population 

Continuous 

linear 

No 

1 

quadratic 0.68 

Wilderness 

area 

Continuous 

linear 
1 

Continuous, 

quadratic 
1 

Forest industry 

jobs 

Continuous 

linear 
N/S (zero) 

Continuous 

quadratic 
N/S (zero) 

Layton & Brown 

(2000) 
ENV Forest loss 

Piecewise 

linear 
Yes 1.15, 1.29 

Oehlmann et al. 

(2017) 
ENV 

Forest share 
Continuous 

linear 
No 

1 

Land 

conversion 

Continuous 

linear 
1 

Ando et al. 

(2020) 
ENV 

Flood 

frequency 

Continuous 

linear 
No 1 

Feit et al. (2010) MKT Styling appeal 
Continuous 

linear 
No 1 

Ellickson et al. 

(2019) 
MKT Fat content Binary dummy No 0 

Hensher (2004) TRAN Travel time 
Continuous 

linear 
No 1 

Choi et al. (2018) TRAN CO2 emissions 
Continuous 

linear 
No 1 

Bech et al. 

(2011) 
HEAL 

Distance to 

dental office 

Continuous 

linear 
No 1 

Liu et. al (2017) HEAL 

Appointment 

delay 

Piecewise 

linear 
No 

1.11 

In-clinic  

wait-time 

Piecewise 

linear 
1.34 

 

NOTES: ENV = Environmental economics, MKT = Marketing research, TRAN = Transportation studies, HEAL 

= Health economics. N/S = estimated utility parameter is not statistically significant (implying 𝐸̅𝑊𝑇𝑃 = 0). 
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Boxall et al. (1996) apply DCE and CV to study preferences for moose-hunting sites. The main 

attribute is expected moose encounters per day, with four attribute levels (less than 1 encounter, 1-2, 

3-4, and more than 4 encounters) entered piecewise linearly in estimations.7 The implied scope 

elasticity of WTP for moose encounters is 0.51.8 Adamowicz et al. (1998) use DCE methodology in 

combination with CV to investigate non-use values associated with habitat conservation. Their DCE 

design has three attributes that lend themselves to inferring scope elasticities: mountain caribou 

population, size of wilderness area, and number of forest industry jobs. Both linear and quadratic 

functional forms are explored, with only the latter permitting non-constant marginal utility and scope 

elasticities not equal to unity. The implied scope elasticity of WTP for improvements in the caribou 

population is 0.68 based on results reported for the statistically superior joint model (Table 2, p. 70), 

evaluated between WTP for maintaining the current level of 400 versus WTP for the conservation 

target of 600. For the wilderness area attribute, the quadratic term is insignificant, suggesting constant 

marginal utility and a scope elasticity of one. Lastly, the job attribute is insignificant, which implies 

zero marginal utility and a scope elasticity of zero. Common to all three of these early environmental 

DCE studies is the absence of a discussion of internal (construct) validity, scope sensitivity, or 

concepts related to economic significance.  

 

Layton and Brown (2000), in contrast, explicitly discuss estimated scope effects in relation to 

economic theory. This study is the first to employ mixed logit in an environmental DCE and the first 

DCE to assess the nonmarket benefits of climate action. It investigates WTP to avoid adverse 

ecosystem impacts from climate change through mitigation and adaptation policies. A key attribute of 

interest is forest loss in the Rocky Mountains, with experimental levels of 0, 600, 1 200, and 2 500 feet 

of elevation before entering forested area. The estimated mean utility parameters in a piecewise linear 

specification suggest substantial WTPs and statistically significant scope effects. The implied scope 

elasticity of WTP from 600 feet to 2 500 is 1.15 in a 60-year time horizon and 1.29 in a 150-year time 

horizon.9  

                                                      

7 Specifically, Boxall et al. (1996) use a so-called “effects code” approach, which involves estimating utility coefficients on 

dummy variables for the first three levels. The implied utility coefficient for the fourth level is then the negative sum of the 

three estimated coefficients. The estimated coefficients reported in the article (Table 2, p. 250) are -10.238, -0.0622, and 0.444, 

which implies that the fourth utility coefficient is 9.86. 

8 We use Eq. (5) to compute the scope arc elasticity between WTP for going from level 1 to level 2 versus WTP for going from 

level 1 to level 4. For the denominator of the elasticity formula, levels of 0.5, 1.5, and 5 encounters are assumed for levels 1, 

2, and 4, respectively. Marginal utility of money is identified from the estimated coefficient (-0.0056) of a travel distance 

attribute along with the assumption on transportation costs used by the authors ($0.27/km). Further details on how we infer this 

estimate and the other scope elasticities reported in Tables 1 and 2 are available upon request.   

9 These scope elasticities are indicative of increasing incremental disutility from additional forest loss and increasing 

incremental WTP to avoid this climate change impact.  
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Lastly, Oehlmann et al. (2017) and Ando et al. (2020) illustrate recent DCEs in the environmental 

valuation literature. These studies use sophisticated designs to explore frontier research issues. 

Oehlmann et al. (2017) report from a design-of-design study with focus on status quo effects in the 

empirical context of land use and biodiversity conservation in Germany. The underlying DCE includes 

two quantitative attributes: landscape forest share and rate of land conversion. Ando et al. (2020) 

investigate preferences for storm water management across two cities (Chicago and Portland) and 

across two currencies (money and time). The underlying DCE has only one quantitative non-cost 

attribute, namely reduced flood frequency. Unfortunately, both studies impose constant marginal 

utility and scope elasticity equal to unity by employing linear utility specifications. Neither study 

discusses DCE scope sensitivity. 

3.2 Examples from other fields 

The DCE methodology was originally developed from conjoint techniques utilized in marketing 

research (Louviere et al., 2000) and is now employed in many other fields. Here, we review examples 

from marketing research, transportation studies, and health economics.  

 

Two recent examples in the marketing literature are Feit et al. (2010) and Ellickson et al. (2019). The 

main contribution of Feit et al. (2010) is the proposal of a novel empirical method for combining DCE 

and market data. They exemplify this method in the context of studying preferences for minivans in 

the United States. A central motivation is that obtaining accurate estimates of relative attribute weights 

is more important for product design than market share predictions. A key attribute in their application 

is van appearance (styling appeal) coded on a five-point numeric scale. Unfortunately, this attribute is 

entered linearly in estimations, which imposes the constraints of constant marginal utility and scope 

elasticity of WTP equal to unity. These restrictions are problematic since it seems plausible that the 

relative importance of styling appeal could vary across the range of this attribute.  

 

Ellickson et al. (2019) also propose and exemplify a new empirical approach for combining DCE and 

market data. The application context is single-cup Greek yogurt sales in the United States. All non-

price attributes are qualitative/categorical (e.g., brand name, nutritional fortification indicators), which 

do not lend themselves easily to scope analysis. However, the authors mention one inherently 

quantitative attribute as potentially important to consumers, namely, “fat level” or “fat content”. 

Unfortunately, the DCE design only makes a binary distinction between zero-fat and fat-containing 

varieties. In estimations, the zero-fat indicator enters positively and significantly, suggesting that 

consumers have a positive WTP for avoiding fat-containing yogurts. However, it is not possible to 
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identify differences in preferences across different levels of fat content. This is effectively the same as 

assuming a scope elasticity of zero. 

 

The opportunity cost of travel time is an important topic in the transportation literature, which 

recognizes that different types of travel time may have different scarcity values due to idiosyncratic 

utility/disutility elements. Hensher (2004) focuses on the impact of varying DCE design dimensions 

on estimates of the opportunity cost of different time usages (e.g., “free flow time” versus “slowed 

time”). A more recent transportation study by Choi et al. (2018) investigates preferences for carbon 

offsets (i.e., reducing one’s CO2 emissions) in air travel. While the underlying DCEs of Hensher 

(2004) and Choi et al. (2018) seem to have sufficient variation in attribute levels for the estimation of 

flexible functional forms, both studies settle on simple linear utility approximations, which assume 

constant marginal utility and a scope elasticity of unity. Neither study discusses the scope issue.  

 

DCE methodology is also increasingly employed in the health economics field (Soekhai et al., 2019). 

Bech et al. (2011) study preferences for dental care services and Liu et al. (2017) study preferences for 

doctor’s appointments. An important attribute in the DCE of Bech et al. (2011) is “distance to the 

dentist” with experimental levels of 1, 3, 7, and 15 kilometers. This attribute is entered linearly in 

estimations, which implies that the scope elasticity of WTP to reduce travel distance is unity. In 

contrast, Liu et al. (2017) use a piecewise linear specification for exploring the importance of two 

types of waiting attributes, “appointment delay” (ranging from zero to 14 days) and “in-clinic wait 

time” (ranging from five to 45 minutes). Based on estimation results reported in the article, we infer 

scope elasticities of WTP equal to 1.11 and 1.34 for reducing appointment delay and in-clinic wait 

time, respectively.10  

3.3 Inferred scope elasticities in wind power DCEs 

In sections 4 and 5, we present our DCE on preferences for renewable energy expansions in Norway. 

Table 2 below summarizes relevant comparison studies found in the intersection between 

environmental economics and energy economics.  

 

As can be seen from the second column, this literature has explored a wide range of non-monetary 

attributes related to the renewable energy mix, characteristics of wind power expansions, landscape, 

                                                      

10 Liu et al. (2017) report results from four related studies. Here, we use WTP results from Study 4 (Table 10, p. 1992). The 

inferred scope elasticity for appointment delay is based on the difference in WTP to avoid a 3-day versus a 14-day delay 

(relative to no delay). For in-clinic wait-time, the scope elasticity is based on a comparison of 30 versus 45 minutes of waiting 

(relative to a wait-time of 15 minutes).   



 

15 

ecosystem, and air pollution effects, and economic impacts. However, none of the studies explicitly 

discusses the scope sensitivity issue in relation to DCE validity diagnostics. Many attributes preclude 

scrutiny of scope elasticity because they are explored with categorical, qualitative representations 

(e.g., protection of cliffs in Alvarez-Farizo and Hanley, 2002). Furthermore, most quantitative 

attributes are estimated using linear specifications, which impose constant marginal utility and scope 

elasticity of WTP equal to one.  

 

Exceptions are Drechsler et al. (2011), Landry et al. (2012), Westerberg et al. (2013), Vecchiato 

(2014), Börger et al. (2015), Brennan and Van Rensburg (2016), and Ladenburg and Dubgaard (2009). 

For example, the DCE in Drechsler et al. (2011) explores four quantitative attributes with piecewise 

linear specifications: size of wind farm, maximum turbine height, red kite population, and minimum 

distance to residential areas.11 Based on results from the statistically superior error-component logit 

model (Table 3, p. 3849), the wind farm size and turbine height attributes do not exhibit significant 

scope effects (implying zero scope elasticity), while the inferred scope elasticities of WTP are 0.76 for 

the red kite attribute and 0.29 for the minimum distance attribute.  

 

Several other studies also include attributes related to people’s proximity to, or distance from, wind 

power installations. The inelastic scope sensitivity with respect to distance in Drechsler et al. (2011) is 

consistent with the inferred scope elasticities of 0.35 in Vecchiato (2014), 0.57 in Ladenburg and 

Dubgaard (2009), and 0.88 in Westerberg et al. (2013). In contrast, the distance attributes in Landry et 

al. (2012) do not exhibit scope effect.  

  

                                                      

11 The same underlying DCE study is also utilized by Meyerhoff et al. (2010) and Mariel et al. (2015).  
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Table 2: Inferred scope elasticities of WTP in previous wind energy DCE studies 

Source Non-cost attributes  
Functional 

form 
Scope discussion 

Implied scope 

elasticity 

Álvarez-Farizo & 

Hanley (2002) 

Protection of cliffs, 

fauna, flora, & 

landscapes 

Qualitative, 

categorical 

dummies 

No N/A 

Bergmann et. al. 

(2006) 

Impact on landscape, 

wildlife, air pollution 

Qualitative, 

categorical 

dummies No 

N/A 

Jobs 
Continuous 

linear 
1 

Longo et al. (2008) 

GHG emissions, 

electricity shortage, 

jobs 

Continuous 

linear 
No 1 

Navrud & Bråten 

2007) 

Type of renewable 

energy source, size of 

plant 

Qualitative, 

categorical 

dummies 

No N/A 

Ku & Yoo (2010) 

Improvements in 

landscape, wildlife, air 

quality, employment  

Continuous 

linear 
No 1 

Borchers et al. 

(2007) 

Source of 

 renewable energy 

Qualitative, 

categorical 

dummies 
No 

N/A 

Quantity of new 

renewable energy 

 

Continuous 

linear 

1 

Fimereli et al. 

(2008); Fimereli & 

Morato (2013) 

Local biodiversity 

Qualitative, 

categorical 

dummies No 

N/A 

Carbon emissions, 

distance from home 

Continuous 

linear 
1 

Kosenius & 

Ollikainen (2013) 

Type of renewable 

energy, biodiversity 

Qualitative, 

categorical 

dummies No 

N/A 

Jobs, CO2 emissions 
Continuous 

linear 
1 

Drechsler et al. 

(2011);  

Size of wind farm 

Piecewise 

linear 
No 

N/S (0) 

Max. turbine height N/S (0) 

Red kite population 0.79 

Distance to residential 

area 
0.29 

Cicia et al. (2012) 
Type of renewable 

energy 

Qualitative, 

categorical 

dummies 

No N/A 

Landry et al (2012) 

Congestion 

Piecewise 

linear 
No 

N/S (0) 

Ocean distance to 

turbines 
N/S (0) 

Sound distance to 

turbines 
N/S (0) 
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Table 2: Inferred scope elasticities of WTP in previous wind energy DCE studies, continued 

Source Non-cost attributes  
Functional 

form 
Scope discussion 

Implied scope 

elasticity 

Westerberg et al. 

(2013) 

Distance to wind farm 
Piecewise 

linear 

No 

0.88 

Artificial reefs & rec. 

activities 
Qualitative, 

categorical 

dummies 

N/A 
Coherent 

environmental policy 

Ek & Matti (2015) 

Bird population  

Binary dummy  No  N/A Reindeer industry 

Jobs 

Ek & Persson 

(2014) 

Landscape impact, 

ownership type, 

community 

consultation, revenue 

transfer 

Qualitative, 

categorical 

dummies 

No N/A  

Vecchiato (2014) 

Wind farm placement 

Qualitative, 

categorical 

dummies 

No 

N/A 

Turbine height 

Piecewise 

linear 

N/S (0) 

Turbine number N/S (0) 

Minimum distance 

from houses 
0.35 

Börger et al. (2015) 

Species impacted 
Piecewise 

linear No 

0.69 

Turbine 

height/visibility 
N/S (0) 

Electromagnetic impact Binary dummy N/A 

Brennan & Van 

Rensburg (2016) 

Number of turbines 
Continuous 

linear 

No 

1 

Height of turbines Piecewise 

linear 

0.68 

Minimum distance N/S (0) 

Community 

representation 
Binary dummy N/A 

Ladenburg & 

Dubgaard (2009)  

Number of wind 

farms/turbines 
Piecewise 

linear 
No 

N/S (0) 

Distance 0.57 

García et al (2016) 

Number of turbines 
Continuous 

linear 

No 

1 

Local sports facility 

Qualitative, 

categorical 

dummies 

N/A 

NOTES: N/A = not available (due to use of qualitative attribute definition or insufficient information provided in 

the paper). N/S (0) = not statistically significant (implying 𝐸̅𝑊𝑇𝑃 = 0). 
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A key attribute in our application below is the number of new wind turbines in Norway. The turbine 

attribute enters significantly, with functional form-restricted scope elasticity of unity in both Brennan 

and Van Rensburg (2016) and Garcia et al. (2016), whereas it is insignificant in Vecchiato (2014) and 

Ladenburg and Dubgaard (2009). In Drechsler et al. (2011), the wind farm size attribute is highly 

correlated with turbine count.12 However, as noted above, there are no statistical differences in 

preferences across wind farm sizes.  

4. Case study: preferences for renewable energy in Norway 

We analyze data from a recent DCE study of preferences relating to expansion of renewable energy 

production in Norway, that had a specific focus on wind power externalities. The study was motivated 

by the Norwegian Government’s 2018 call for a long-term National Plan for the expansion of wind 

power production on land. The Ministry of Petroleum and Energy assigned to the Norwegian Water 

Resources and Energy Directorate (NVE) the tasks of providing an update of the scientific knowledge 

base and identifying the geographical areas of Norway that would be the most suitable for new wind 

farms.  

 

The interest in expanding wind power production is two-fold. First, even though Norway is self-

sufficient when it comes to renewable electricity, less than 2/3 of domestic energy consumption is met 

from renewable sources.13 Second, the Norwegian Government is seeking to expand renewable 

production in order to meet its international commitments in connection with transforming the global 

energy system and reducing carbon emissions.  

 

By 2018, the wind power industry generated 3-4 TWh per year on 30 sites with 610 wind turbines. An 

additional 30 projects with 600-700 new turbines had also been approved and were under planning or 

construction. With some of Europe’s best wind resources, the Government envisages that wind power 

production could reach 25 TWh per year by 2030, depending on production costs and prospective 

electricity prices (NVE, 2019).  

 

                                                      

12 Small farm = 4-6 wind turbines, medium farm = 10-12 wind turbines, large = 16-18 wind turbines. 

13 In a typical year, Norway is a net exporter of renewable electricity, with a production portfolio comprising 95% hydropower 

and 5% thermal and wind power. For more information, see the following electricity and energy reports from Statistics Norway:  

https://www.ssb.no/energi-og-industri/statistikker/elektrisitet/aar 

https://www.ssb.no/energi-og-industri/statistikker/energibalanse 

https://www.ssb.no/energi-og-industri/statistikker/elektrisitet/aar
https://www.ssb.no/energi-og-industri/statistikker/energibalanse
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NVE’s work on the National Plan started with the mapping of 43 areas distributed across different 

regions of Norway that were deemed to have high potential and meet basic eligibility criteria for new 

wind power deployment. NVE then examined each of these areas with respect to production and 

transmission capacity, stakeholder interests, and environmental impact. During its work, NVE 

commissioned multiple technical/scientific reports from external consultants, collaborated with the 

Norwegian Environment Agency, and solicited input from local and regional stakeholders in both the 

private and the public sector. This process led to the identification of a sub-set of 13 geographical 

areas proposed for future prioritization. The priority areas are located throughout Norway, with 

concentrations in Central and Western Norway, and comprise mostly coastal and mountain landscapes.  

 

Despite the deliberate planning process, the final report (NVE, 2019) met widespread criticism leading 

to intense debate in social and public media. Citizens expressed concern about the impact of wind 

power installations on Norway’s increasingly reduced pristine nature. Various environmental groups 

and outdoor recreation and tourism organizations protested. Local politicians objected on the basis that 

the plan would limit their local autonomy. Finally, the wind power industry itself opposed the plan 

because of the spatial constraints it placed on future expansions of production. Our study was 

conducted concurrently with NVEs planning process. Hence, we argue that our DCE study exhibits an 

unusually high degree of relevance and consequentiality.  

Figure 1: Sample choice card (wind turbine version, translated from Norwegian) 
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4. The DCE design 

The DCE survey was designed over a 15-month period starting in January 2018, with implementation 

in April 2019. An overarching design consideration was the objective of making the study relevant for 

national policy decisions. The selection and configuration of attributes and other elements of the 

choice architecture was the combined outcome of a careful review of the existing literature, input from 

a workshop with experts on valuation of wind power externalities, and feedback from two focus 

groups and several pilot tests, and following general SP guidance (e.g., Johnston et al., 2017).  

 

The final survey started with questions that elicited general opinions, awareness, and knowledge 

before guiding the respondents through information about Norway’s renewable energy production and 

potential plans for future expansions. Next, the respondents were provided details on the structure of 

the DCE, including careful descriptions of alternatives and attributes. At the core of the DCE, the 

respondents were asked to express their preferences on eight choice cards. Standard debriefing, 

attitudinal, and socio-economic questions followed at the end of the survey.14  

 

Figure 1 provides an illustrative choice card. Each choice card contained three alternatives, status quo 

and two scenarios with expansion of energy production, varying in five attributes. The first attribute, 

new renewable energy production from all sources, had experimental levels of zero (no change), 10, 

20, and 30 TWh per year. The second attribute, new wind turbines, had experimental levels of zero (no 

change), 600, 1200, and 3000 turbines. The third attribute designated prioritized region for new wind 

power production (no prioritization, Northern Norway and Central Norway, Western Norway, or 

Eastern Norway and Southern Norway). The fourth attribute was prioritized landscape type for new 

wind power production (no prioritization, coastal land, lowland and forest land, or mountain land). 

Finally, the fifth attribute, change in household’s monthly electricity bill (NOK), had experimental 

levels of -450, -150, zero (no change) +150, and +450. Attribute configurations and the resulting 

choice cards were generated by means of SAS software using the ChoicEff-macro15 and subject to the 

restriction that new wind turbines imply new renewable energy production, but not vice versa. In total, 

the survey utilized 3 x 8 = 24 different choice cards.  

 

The two quantitative non-cost attributes are of particular interest for the scope elasticity analysis in 

this paper. The first attribute is intended to broadly capture the nonmarket benefits of expanding 

                                                      

14 Dugstad et al. (2020) provide further details. A translated version of the DCE part of the survey is available as supplementary 

material. A copy of the full survey in Norwegian is available upon request.  

15 http://support.sas.com/techsup/technote/mr2010choiceff.pdf 

http://support.sas.com/techsup/technote/mr2010choiceff.pdf
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Norway’s production of renewable energy. Both prior research and our focus group results indicate 

that people are positive to such expansion for reasons related to concern over energy security, support 

of carbon emission reduction, and a desire to stimulate economic activity. The second attribute is 

intended to capture specific preferences for wind power, holding constant the level of renewable 

energy production. As documented by prior research summarized in Mattman et al. (2016) and 

Zerrahn (2017), wind turbines and accompanying infrastructure (e.g. roads and power lines) have 

multiple adverse impacts. These impacts include habitat displacement, ecosystem fragmentation, 

negative effects on recreational experiences and visual landscape amenities, and issues related to noise 

and light-, shadow- and ice-casting. In total, these externalities can reduce the well-being of local 

residents (e.g., Gibbons, 2015; Krekel and Zerrahn, 2017), lower the growth potential of other regional 

industries such as tourism and recreation (e.g., Broekel and Alfken, 2015), and generally threaten non-

use values associated with the protection of pristine nature (Krutilla, 1967).  

4.2 Sampling scheme, experimental design variation and implementation 

During the survey development stages, previous experience and the likelihood of future exposure were 

identified as potentially important determinants of preferences. For this reason, it was decided to 

conduct the survey in two geographic regions with differential experiences and exposure. Specifically, 

we sampled Rogaland County in Western Norway and Oslo County in Eastern Norway with 

population sizes (shares) of approximately 476 000 (9%) and 681 000 (13%), respectively. Rogaland 

is the county that currently has most wind power production and could have substantially more in the 

future. In contrast, Oslo does not have wind power production and is also unlikely to have any in the 

future.  

 

In our analysis, we investigate potential differences in scope elasticities across the two subsamples. 

The tentative a priori expectation is that wind power experience/exposure could affect both WTP and 

scope elasticity estimates. Previous research indicates that WTP to avoid adverse impacts from 

industrial development may be higher or lower as result of experience/exposure, depending on the 

mechanisms in play (Zerrahn, 2017; Dugstad et al., 2020). However, this research is silent with 

respect to how experience/exposure might affect scope sensitivity. Consequently, we do not 

hypothesize a specific sign on expected difference in scope elasticities between the two counties.  

 

In addition to the dual-region sampling scheme, we also implement experimental variation in the unit 

of measurement of the wind power attribute. Half the respondents were given choice cards with new 

wind turbines (as in Figure 1), while the other half received cards with new production sites. The two 
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survey versions were otherwise identical. Moreover, these two measurement units were perfectly 

correlated (1 production site = 30 wind turbines). The motivation for this experimental treatment is an 

emerging literature on attribute translations, choice architecture, and signposting/nudging (e.g., 

Hertwig and Grüne-Yanoff, 2017; Ungemach et al., 2018), which suggests that how an attribute is 

presented in a choice context, including its unit of measurement, is not arbitrary. Specifically, different 

measurement units can invoke different motivational associations or activate different objectives/goals 

(e.g., Dellaert et al., 2018; Schlüter et al., 2017). Consequently, the representation of an attribute may 

cause people to weight the attribute differently in the decision-making process. A change in unit of 

measurement could also potentially shift the weight of the attribute in question relative to other choice 

dimensions. Here, we investigate whether a seemingly innocuous change in unit of measurement, from 

number of wind turbines to number of production sites, alters scope elasticity estimates. This is 

particularly interesting since elasticities are unit free. Our tentative a priori expectation is that the unit 

of measurement will not have an impact on the scope elasticity estimates. 

 

The data collection was implemented as an online survey using the pre-recruited household panel of 

NORSTAT,16 one of the leading survey companies in Norway. In total, 4 404 households were invited 

to participate in the survey. The topic of the survey was not revealed in the survey invitation. The 

response rate was 24% and the dropout rate was 12%. Table A1 in the appendix provides basic 

descriptive statistics for the full dataset, the geographic subsamples, and the unit of measurement 

subsamples. For additional details, see Dugstad et al. (2020). 

  

                                                      

16 www.norstat.no 

http://www.norstat.no/
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Table 3: Variables used in the estimation of deterministic indirect utility 

Name Description 

COST Change in household monthly electricity price 

TWH New renewable energy production in Norway, TWh (per year) 

TWH2 Squared term for TWH 

TURB Number of new wind turbines built in Norway 

TURB2 Squared term for TURB 

TWH10 Dummy for 10 TWh of new renewable energy production in Norway (per year) 

TWH20 Dummy for 20 TWh of new renewable energy production in Norway (per year) 

TWH30 Dummy for 30 TWh of new renewable energy production in Norway (per year) 

TURB600 Dummy for 600 new wind turbines built in Norway 

TURB1200 Dummy for 1200 new wind turbines built in Norway 

TURB3000 Dummy for 3000 new wind turbines built in Norway 

MOUNT Dummy for mountain landscapes being prioritized for new wind power 

LOW Dummy for lowland & forest landscapes being prioritized for new wind power 

COAST Dummy for coastal landscapes being prioritized for new wind power 

NORTHMID Dummy for prioritizing Northern & Central Norway for new wind power 

WEST Dummy for prioritizing Western Norway for new wind power 

EASTSOUTH Dummy for prioritizing Eastern & Southern Norway for new wind power 

5. Empirical results and analysis 

We estimate panel mixed logit models with jointly normally distributed parameters on the non-cost 

attributes to account for multiple observations per respondent and preference heterogeneity and to 

relax the IIA assumption associated with fixed parameter logit models (Train, 2009). The joint 

probability for the sequence of preference expressions (𝑖𝑛) for individual n over J alternatives (j = 1, 2, 

3) for the T choice cards (t = 1, 2, …,8) presented in the DCE is given by: 

 

(6) Prob(𝑖𝑛|𝜃) = ∫ ∏
exp(𝑉𝑖𝑛𝑡)

∑ exp(𝑉𝑗𝑛𝑡)
𝐽
𝑗

𝑇
𝑡=1  𝑓(𝛽|𝜃)𝑑𝛽, 

 

where 𝑓(𝛽|𝜃) represents the parameter distribution.17  

                                                      

17 The probability in (6) does not have a closed-form solution and must be approximated by simulation procedures (Train, 

2009). The mixed logit results presented in this paper were produced in R-Studio using 1000 Halton draws.  
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We estimate three different specifications for deterministic indirect utility (𝑉𝑖𝑛𝑡), a linear specification 

(LINEAR) implying constant marginal utilities and restricting the scope elasticities to unity, a 

quadratic specification (QUADRATIC), and a piecewise linear specification (PIECEWISE). Relating 

the most flexible specification, PIECEWISE, to the attributes described in Section 4, yields the 

following indirect utility function: 

 

(7) 𝑉𝑖𝑛𝑡 = 𝛼𝑆𝑄 + 𝛽1𝐶𝑂𝑆𝑇𝑖𝑡 + 𝛽2,𝑛𝑇𝑊𝐻10𝑖𝑡 + 𝛽3,𝑛𝑇𝑊𝐻20𝑖𝑡 + 𝛽4,𝑛𝑇𝑊𝐻30𝑖𝑡 

                      +𝛽5,𝑛𝑇𝑈𝑅𝐵600𝑖𝑡 + 𝛽6,𝑛𝑇𝑈𝑅𝐵1200𝑖𝑡 + 𝛽7,𝑛𝑇𝑈𝑅𝐵3000𝑖𝑡 + 𝛽8,𝑛𝑀𝑂𝑈𝑁𝑇𝑖𝑡 + 𝛽9,𝑛𝐿𝑂𝑊𝑖𝑡 

                      +𝛽10,𝑛𝐶𝑂𝐴𝑆𝑇𝑖𝑡 + 𝛽11,𝑛𝑁𝑂𝑅𝑇𝐻𝑀𝐼𝐷𝑖𝑡 + 𝛽12,𝑛𝑊𝐸𝑆𝑇𝑖𝑡 + 𝛽13,𝑛𝐸𝐴𝑆𝑇𝑆𝑂𝑈𝑇𝐻𝑖𝑡. 

 

The variables used in the estimation are described in Table 3. The term 𝛼𝑆𝑄 is an alternative-specific 

constant that captures the effect of the status quo alternative on the choice cards (no additional 

renewable energy production, no regional/landscape prioritization for wind power production, and an 

unchanged electricity bill). The variable COST represents change in electricity bill. The variables 

TWH10, TWH20, and TWH30 are indicators for the levels of new renewable energy production, 

TURB600, TURB1200, and TURB3000 are indicators for numbers of new wind turbines, 

NORTHMID, WEST, and EASTSOUTH are regional prioritization indicators, and MOUNT, LOW, 

and COAST are landscape prioritization indicators.  

5.1 Baseline results and comparison across functional forms 

Estimation results for the full dataset are reported in Table 4. Overall, the different model 

specifications yield consistent patterns for key utility parameters. The estimated COST parameter is 

negative and highly significant, as expected. The average respondent obtains positive utility from 

expansion of renewable energy production and disutility from increasing the number of turbines, as 

indicated by the signs of the mean coefficients of the linear terms (TWH and TURB). The signs of the 

coefficients of the quadratic terms (THW2 and TURB2) in the QUADRATIC model indicate 

diminishing marginal utility from new renewable energy production and diminishing marginal 

disutility from new wind turbines. These preference patterns are also reflected in the PIECEWISE 

estimation. For example, the difference between the mean coefficients of TURB600 and TURB1200 is 

larger than the difference between the mean coefficients of TURB1200 and TURB3000. The results 

for prioritized regions and landscapes, which are of second-order interest for the research focus of this 

article, are mixed. The estimated standard-deviation coefficients are generally large and significant 

suggesting substantial preference heterogeneity. Lastly, the overall model-fit statistics indicate that the 

PIECEWISE model is statistically superior.  
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Table 4: Full sample panel mixed logit parameter estimates for different functional forms (lin-

ear, quadratic, and piecewise linear) of deterministic indirect utility 

MODEL:  LINEAR QUADRATIC PIECEWISE 

 Attribute Mean  SD Mean SD Mean SD 

ASC 0.0585  0.1150**  0.088  

COST -0.0035***  -0.0038***  -0.0040***  

TWH 0.0247*** 0.0793*** 0.0878*** 0.1652***   

TWH2   -0.0019*** 0.0028***   

TURB -0.2414 *** 0.8830*** -1.4920*** 3.9245***   

TURB2   0.3474*** 1.1034***   

TWH10     0.8640*** 1.4921*** 

TWH20     1.0346*** 2.2837*** 

TWH30     1.1447*** 2.4985*** 

TURB600     -1.0822*** 2.4324*** 

TURB1200     -1.4410*** 3.2451*** 

TURB3000     -1.4758*** 3.0170*** 

MOUNT -0.5617*** 1.6608*** 0.1625 2.1366*** 0.3782 2.1685*** 

LOW -0.5474*** 1.8033*** 0.1779 1.6997*** 0.3949 1.6706*** 

COAST -0.4554*** 2.0590*** 0.1751 1.8426*** 0.3595 2.0671*** 

NORTHMID -0.0663 1.9498*** -0.2973 1.9703*** -0.4128* 2.2133*** 

WEST -0.2712* 2.7642*** -0.5454** 3.1065*** -0.5773** 3.2677*** 

EASTSOUTH -0.0177 1.3767*** -0.2857 1.9040*** -0.3991* 2.1664*** 

Log likelihood -5342.2 -5225.8 -5187.3 

Pseudo-R2 0.2600 0.2760 0.2811 

No. of obs. 6568 6568 6568 

Note: ***p<0.01, **p<0.05, *p<0.1.  
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Figure 2: Full sample WTP per household per month (mean and 95% CI) for different func-

tional forms for the attributes TURB (number of turbines) and TWH (renewable electricity pro-

duction in TWh) based on piecewise linear specification 

 
 

Figure 2 summarizes welfare estimates for the two quantitative attributes in terms of WTP for 10, 20, 

and 30 TWh of new renewable energy production and WTP to avoid 600, 1200, and 3000 new wind 

turbines, respectively. The welfare estimates are reported in Norwegian Kroner (NOK) on a per 

household per month basis.18 The LINEAR model has the lowest welfare (WTP) estimates, which 

increase monotonically due to the constant marginal utility restriction. The QUADRATIC and 

PIECEWISE specifications generate somewhat higher WTP estimates. For example, the mean 

estimates of WTP to avoid 600, 1200 and 3000 turbines are NOK 200, NOK 340, and NOK 360 in the 

QUADRATIC model and NOK 270, 360, and 380 in the PIECEWISE model. In contrast, these 

estimates are NOK 40, NOK 80, and NOK 200 in the LINEAR model.  

 

                                                      

18 Given the specific nature of our DCE design, welfare estimates for the wind power attribute can be interpreted either as 

“WTP to avoid new wind turbines” or “WTA compensation for new wind turbines”. We use the phrase WTP for the sake of 

simplicity and consistency with the scope elasticity of WTP concept.   
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The estimated utility coefficients in Table 4 together with the corresponding welfare measures in 

Figure 2 establish the presence of scope impact. Furthermore, these estimated effects are statistically 

significant. For the LINEAR model, statistical significance follows directly from the significance of 

the estimated mean coefficients of THW and TURB. In the QUADRATIC and PIECEWISE cases, 

statistical scope significance can be inferred from the fact that the WTP estimates for the lowest and 

highest attribute levels for both attributes have non-overlapping confidence intervals.  

Table 5: Full sample scope elasticity of WTP estimates (mean and 95% CI) for different func-

tional forms for the attributes TURB (no. of turbines) and TWH (renewable electricity produc-

tion in TWh)  

Model Attribute Mean Lower bound Upper bound 

LINEAR 
TURB 1 1 1 

TWH 1 1 1 

QUADRATIC 
TURB 0.4028 0.3431 0.4617 

TWH 0.2827 0.2133 0.3516 

PIECEWISE 
TURB 0.2320 0.1864 0.2762 

TWH 0.2703 0.2066 0.3341 

Note: The bootstrap t-percentile method with 10 000 replications was used to estimate the CI. 

 

Table 5 summarizes scope elasticity of WTP. The LINEAR model assumes unitary elastic scope 

sensitivities for all increases in a good. In the QUADRATIC and PIECEWISE models, the scope 

elasticities of WTP for new renewable energy production evaluated between 10 and 30 TWh are 0.28 

and 0.27, respectively. The scope elasticities of WTP to avoid new wind turbines evaluated from 600 

to 3000 turbines are 0.40 in the QUADRATIC model and 0.23 in the PIECEWISE model. 

Interestingly, while the confidence intervals indicate that both estimates are statistically greater than 

zero and less than one (i.e., inelastic), they are also statistically different at the 0.01 significance level. 

This suggests that choice of functional form may have an impact on scope inferences in DCE studies. 

In the following we limit the subsample analyses to comparing results for the more flexible and 

statistically superior PIECEWISE specification. 

5.2 Comparing across geographic subsamples 

Figure 3 and Table 6 summarize WTP and scope elasticity estimates for the two geographic subsamples. 

The underlying panel mixed logit estimation results are provided in Table A2. As seen from Figure 3, 
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Figure 3: WTP per household per month (mean and 95% CI) by geographic subsample (Oslo 

and Rogaland counties) for the attributes TURB (number of turbines) and TWH (renewable 

electricity production in TWh) based on piecewise linear specification 

 
 

Table 6: Scope elasticity of WTP estimates (mean and 95% CI) by geographic subsample (Oslo 

and Rogaland counties) for the attributes TURB (no. of turbines) and TWH (renewable electric-

ity production in TWh) based on piecewise linear specification  

Model Attribute Mean Lower bound Upper bound 

OSLO 
TURB 0.2123 0.0756 0.3457 

TWH 0.3171 0.2372 0.3960 

ROGALAND 
TURB 0.4330 0.3679 0.4978 

TWH 0.3015 0.1750 0.4366 

Note: The bootstrap t-percentile method with 10 000 replications was used to estimate the 95% CI. 

 

the ROGALAND model implies lower WTPs for new renewable energy production and higher WTPs 

for avoiding wind turbines than the OSLO model. The differences in WTP between the two 

subsamples are significantly different for all attribute levels, except for the case of 600 turbines, as 

assessed by the bootstrap t-percentile method with 10 000 replications to construct 95% confidence 

intervals (Cameron and Trivedi, 2005). Nonetheless, as seen in Table 6, the scope elasticities for new 

renewable energy production are statistically and substantively indistinguishable, at 0.30 for Rogaland 
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and 0.32 for Oslo. In contrast, the estimated scope elasticity of WTP to avoid turbines is twice as high 

in ROGALAND as in OSLO (0.43 versus 0.21). This difference is also statistically significant (see 

Table 8). In combination, the higher WTPs and scope sensitivity associated with the turbine attribute 

in the Rogaland subsample suggest that experience/familiarity may adversely affect wind power 

acceptance in Norway.19  

Figure 4: WTP per household per month (mean and 95% CI) by unit of measurement subsam-

ple (1 site = 30 turbines) for the attributes TURB (no. of turbines) and TWH (renewable electric-

ity production in TWh) based on piecewise linear specification 
 

 
 

  

                                                      

19 These differences may be attributable to factors other than experience/exposure (Dugstad et al., 2020). The two geographic 

subsamples have slightly different socioeconomic profiles (Table A1). For this reason, we performed a robustness check using 

propensity score matching techniques (Liebe et al., 2015). The differences in WTPs and scope elasticity between the two 

subsamples were retained in these estimations. Results are available upon request. 
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Table 7: Scope elasticity of WTP estimates (mean and 95% CI) by unit of measurement subsam-

ple (1 site = 30 turbines) for the attributes TURB (no. of turbines) and TWH (renewable electric-

ity production in TWh) based on piecewise linear specification  

Model Attribute Mean Lower bound Upper bound 

TURBINES 
TURB 0.3544 0.2739 0.4318 

TWH 0.2611 0.1619 0.3608 

SITES 
TURB 0.1851 0.1026 0.2633 

TWH 0.4526 0.3575 0.5481 

Note: The bootstrap t-percentile method with 10 000 replications was used to estimate the 95% CI. 

5.3 Comparing across units of measurement 

Figure 4 and Table 7 summarize WTP and scope elasticity estimates for the two unit of measurement 

subsamples (see Table A2 for the underlying panel mixed logit results). The estimated models are 

referred to as TURBINES and SITES, respectively. Bear in mind that the only difference between the 

two DCE versions was the unit of measurement for the wind power attribute, specifically, the number 

of wind turbines versus the number of production sites, with one production site described as 

comprising thirty wind turbines. The WTP estimates are reported on a per turbine basis for 

comparison.  

 

Contrary to our tentative a priori expectation, the two measurement units are associated with different 

welfare estimates and scope sensitivities. Specifically, the TURBINES model has higher WTPs 

(Figure 4) and scope elasticity (Table 7) for the wind power attribute than the SITES model. For 

example, estimated WTP to avoid 1200 turbines is NOK 450 in the former versus NOK 330 in the 

latter. Furthermore, the scope elasticity is different in the two subsamples, at 0.35 versus 0.19. These 

differences are statistically significant (Table 8).  

Table 8: Simulated subsample differences in estimated scope elasticities (mean and 95% CI) 

based on piecewise linear specification 

Sub-sample comparisons Attribute Mean difference  Lower bound Upper bound 

OSLO vs ROGALAND 
TURB -0.1953 -0.3946 -0.0491 

TWH 0.0224 -0.1308 0.1698 

TURBINES vs SITES 
TURB 0.1721 0.0653 0.2759 

TWH -0.1937 -0.3279 -0.0607 

Note: The bootstrap t-percentile method with 10 000 replications was used to estimate the 95% CI. 
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Interestingly, the unit of measurement also seems to have an impact on the new renewable energy 

production attribute. Here, the scope elasticity of WTP is lower in the TURBINES model (0.26) than 

in the SITES model (0.45). In combination, these findings suggest that choice of attribute 

representation may influence scope inferences in DCE studies, even when the difference in the 

available metrics seems innocuous from a design perspective.  

6. Concluding remarks 

Investigating the significance of scope sensitivity remains an important validity check in SP research. 

However, it is important to distinguish between statistical and economic significance (Amiran and 

Hagen, 2010; Whitehead, 2016; Lopes and Kipperberg, 2020). This paper is the first to study the 

significance of scope effects in DCEs using the scope elasticity of WTP concept.  

 

Based on our literature analysis, we make the following observations: 1) Investigation of sensitivity to 

scope as an SP validity check (or for any other reason) seems uncommon in the applied DCE 

literature. 2) The majority of studies assume unitary elastic scope sensitivities by employing a linear 

functional form for the deterministic utility component. 3) When more flexible specifications are 

employed, such as quadratic or piecewise linear, there is a tendency towards inelastic scope sensitivity 

(e.g., Boxall et al., 1996; Adamowicz et al., 1998; Drechsler et al, 2011; Ladenburg and Dubgaard, 

2009), though some authors report estimates that are indicative of elastic relationships (e.g., Layton 

and Brown, 2000; Liu et al., 2017).  

 

The scarcity of scope sensitivity testing in DCE research seems to coincide with a general lack of 

attention to functional form and the theoretical properties of utility functions (e.g., positive and 

diminishing marginal utility associated with attributes conceptualized as economic goods) in the DCE 

literature. This deficiency, in turn, has implications for the ability to differentiate between statistical 

and economic significance in estimated effects. This observation is consistent with observations made 

by Johnston et al. (2017): “Many published SP studies facilitate estimation by assuming a utility 

function that is linear and additively separable (with constant marginal utilities). Although such 

functions may serve as a useful local first approximation, these implicit assumptions will not always 

hold. Among the concerns in this area is the likelihood that preferences will exhibit nonlinearity (e.g., 

diminishing marginal utility or nonconstant marginal rates of substitution between attributes). Such 

possibilities can be accommodated using richer specifications for preference or welfare functions.”  
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In our analysis of renewable energy preferences in Norway, we find positive WTP for new renewable 

energy production combined with positive WTP for avoiding the negative externalities associated with 

new wind turbines. Furthermore, there are substantial differences in WTP across attribute levels. All 

scope elasticity of WTP estimates are statistically significant and vary between 0.18 and 0.46, 

depending on the attribute analyzed, model specification, geographic subsample, and unit of 

measurement chosen for the wind power attribute. While there is no strict and universally applicable 

benchmark for determining the economic significance of scope impacts, we deem these elasticity 

estimates to be of an adequate and plausible order of magnitude. Thus, they can provide valid inputs to 

cost-benefit analyses and optimization models for the sizing and siting of wind power.  

 

Finally, we advise DCE researchers to include explicit assessments of scope sensitivity and economic 

significance as part of validation diagnostics. Specifically, we recommend that it become routine 

practice to report scope elasticity estimates alongside welfare estimates for the attributes that are 

explored quantitatively in DCE studies. This also means that ex ante design considerations should be 

made to facilitate such analysis. DCE researchers should seek experimental designs that permit 

estimation of flexible functional forms and identification of scope elasticities. Related to this, a fruitful 

direction for future research would be systematic exploration of scope sensitivity determinants. As 

indicated by our analysis, scope elasticities are influenced by conceptual, methodological, and 

empirical dimensions. We believe that it is likely that scope sensitivity will vary across individuals, 

sub-groups and study contexts, as well as be dependent on overall choice architectures. Hence, the 

adequacy, plausibility and economic significance of DCE findings must be assessed on a case-by-case 

basis.  
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APPENDIX 

 

Proof:  𝐸̅𝑊𝑇𝑃 = 1 for linear indirect utility specification 

Let 𝑉𝑗 = 𝛼𝑗 + 𝜷𝒒𝒒𝑗 + 𝛽𝑀(𝑀 − 𝑩𝑗). Then marginal willingness to pay for a change in the level of q-

vector elements s is: 𝑊𝑇𝑃(𝑞𝑠) =
𝛽𝑞𝑆

𝛽𝑀
, which is constant. 

WTPs for two discrete changes, ∆𝑠
𝐴= 𝑞𝑠

𝐴 − 𝑞𝑠
0 and ∆𝑠

𝐵= 𝑞𝑠
𝐵 − 𝑞𝑠

0, are therefore: 𝑊𝑇𝑃𝐴 =
𝛽𝑞𝑆

𝛽𝑀
∙ ∆𝑠

𝐴 and 

𝑊𝑇𝑃𝐵 =
𝛽𝑞𝑆

𝛽𝑀
∙ ∆𝑠

𝐵, respectively.  

Hence, the arc-scope elasticity between the two WTPs is: 

 𝐸̅𝑊𝑇𝑃 ≡
%∆𝑊𝑇𝑃

%∆𝑞𝑠
= (

𝛽𝑞𝑆
𝛽𝑀

∙∆𝑠
𝐵−

𝛽𝑞𝑆
𝛽𝑀

∙∆𝑠
𝐴

𝛽𝑞𝑆
𝛽𝑀

∙∆𝑠
𝐵+

𝛽𝑞𝑆
𝛽𝑀

∙∆𝑠
𝐴)/2

) / (
∆𝑠

𝐵−∆𝑠
𝐴

(∆𝑠
𝐵

+∆𝑠
𝐴)/2

), which reduces to 1.  
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Table A1: Basic descriptive statistics for full sample, Oslo subsample versus Oslo population, 

Rogaland subsample versus Rogaland population, and turbine subsample versus sites subsample 

SOCIODEMOGRAPHIC 

PROFILE 

FULL 

SAMPLE 
OSLO  

OSLO 

POPULA-

TION 

ROGA-

LAND  

ROGA-

LAND 

POPULA-

TION 

TUR-

BINES  
SITES  

Gender 

Male 49 % 46 % 50 % 51 % 51 % 48 % 49 % 

Female 51 % 54 % 50 % 49 % 49 % 52 % 51 % 

Income 

Mean household 

income (1000 

NOK) 

576  564  624 588  735  567  585  

Education 
Higher education, 

(Bachelor or more) 
59 % 70 % 31 % 47 % 23 % 62 % 53 % 

Age Mean age 43 41 44 44 38 42 43 

Region 

Oslo 51 % 100 % 100%  0 % 0%  51 % 51 % 

Rogaland 49 % 0 %  0% 100 %  100% 49 % 49 % 

 

  



 

40 

Table A2: Subsample panel mixed logit parameter estimates (Oslo versus Rogaland counties; 

turbines versus sites unit of measurement) 

ATTRIBUTE 
OSLO ROGALAND TURBINES SITES 

Mean SD Mean SD Mean SD Mean SD 

ASC 0.1241   0.1673*   0.1540*   0.1681*   

COST -0.0038***   -0.0046***   -0.0045***   -0.0043***   

THW10 1.0147*** 1.7507*** 0.6937*** 1.3601*** 1.0712*** 1.5058*** 0.6898*** 2.0012*** 

THW20 1.2163*** 2.6229*** 0.8445*** 2.4962*** 1.3198*** 2.4672*** 0.8356*** 2.6553*** 

THW30 1.4094*** 2.5820*** 0.9079*** 2.6166*** 1.3877*** 2.8032*** 1.0811*** 2.7162*** 

TURB600 -0.6935** 1.6236*** -1.2832*** 2.3709*** -1.2222*** 3.1267*** -0.9985*** 2.2681*** 

TURB1200 -0.8721*** 2.3222*** -2.1278*** 3.8167*** -1.5968*** 3.9916*** -1.4029*** 3.1223*** 

TURB3000 -0.9304*** 2.4276*** -2.2999*** 3.9642*** -2.0321*** 3.8975*** -1.2464*** 3.2486*** 

MOUNT -0.0922 1.7476*** 0.484 2.7228*** -0.0789 1.5018*** 0.3953 2.7577*** 

LOW 0.2088 1.5914*** 0.2389 2.4598*** 0.1929 1.9583*** 0.2747 2.6160*** 

COAST -0.2373 2.1047*** 0.685 2.3854*** 0.1032 1.6772*** 0.4582 2.2040*** 

NORTHMID -0.363 2.0535*** -0.2734 3.0474*** -0.6259* 2.7704*** -0.2496 2.6013*** 

WEST -0.4361* 3.2056*** -1.0364*** 3.7531*** -0.6317** 3.7770*** -0.6954* 3.7142*** 

EASTSOUTH -0.5282* 1.6731*** -0.4213 3.6087*** -0.7133* 2.3974*** -0.4241 2.9662*** 

Log likelihood -2687.8 -2445.6 -2561 2571.9 

Pseudo-R2 0.2719 0.3061 0.2893 0.2880 

No of obs. 3360 3208 3280 3288 

Note: ***p<0.01, **p<0.05, *p<0.1.  
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